首页 > 最新文献

ADVANCES IN DETONATION RESEARCH最新文献

英文 中文
GASIFICATION OF GASEOUS, LIQUID, AND SOLID WASTES WITH DETONATION-BORN ULTRASUPERHEATED STEAM 用爆炸产生的超过热蒸汽气化气体、液体和固体废物
Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a23
S. Frolov, V. A. Smetanyuk, I. A. Sadykov, A. S. Silantiev, I. O. Shamshin, V. S. Aksenov, K. A. Avdeev, F. Frolov
The pulsed detonation gun technology for gasi¦cation of organic waste with ultrasuperheated steam [1, 2] has been demonstrated experimentally for the ¦rst time. The organic waste converter consisted of a pulsed detonation gun and water-cooled spherical §ow reactor (Fig. 1). Experiments on methane conversion as well as on the gasification of liquid (waste machine oil) and solid (sawdust) waste by the high-temperature gaseous detonation products of methane oxygen mixture were performed. The pulsed detonation gun was operated at a relatively low frequency of f = 1 Hz which provided a timeaveraged mean temperature of detonation products in a spherical §ow reactor at a level of 1200 K at a time-averaged absolute pressure in the reactor slightly higher than P = 1 atm. The novel technology was shown to provide complete (100%) conversion of methane into syngas containing H2 and CO with a ratio of H2/CO ≈ 1.25 2. Gasi¦cation of liquid and solid wastes led to the production of syngas containing reactive components H2, CO, and CH4 in the total amounts of 80 and 65 %(vol.) dry basis (d. b.), respectively. The corresponding H2/CO ratios in the product syngas were 0.8 and 0.5. Overall, experiments on methane conversion as well as liquid and solid waste gasi¦cation showed that under the same conditions at f = 1 Hz and P = 1 atm, the composition of syngas in terms of H2 and CO almost did not depend on the type of feedstock (Fig. 2).
采用脉冲爆轰枪技术对有机废物进行超高温蒸汽气化[1,2],首次进行了实验验证。有机废物转化器由脉冲爆轰枪和水冷球形低温反应器组成(图1)。进行了甲烷转化实验以及甲烷氧混合物高温气体爆轰产物对液体(废机油)和固体(锯末)废物的气化实验。脉冲爆轰枪在相对较低的频率f = 1 Hz下工作,在1200 K的水平下,在反应器内的时间平均绝对压力略高于P = 1 atm的情况下,提供了球形低温反应器内爆轰产物的时间平均平均温度。结果表明,该新技术可将甲烷完全(100%)转化为含H2和CO的合成气,H2/CO比值为≈1.25 2。液体和固体废物气化产生的合成气中,H2、CO和CH4的总含量分别为干基(体积)的80%和65%(体积)。产物合成气中对应的H2/CO比值分别为0.8和0.5。综上所述,甲烷转化实验以及液体和固体废气阳离子实验表明,在f = 1 Hz和P = 1 atm的相同条件下,合成气中H2和CO的组成几乎不依赖于原料类型(图2)。
{"title":"GASIFICATION OF GASEOUS, LIQUID, AND SOLID WASTES WITH DETONATION-BORN ULTRASUPERHEATED STEAM","authors":"S. Frolov, V. A. Smetanyuk, I. A. Sadykov, A. S. Silantiev, I. O. Shamshin, V. S. Aksenov, K. A. Avdeev, F. Frolov","doi":"10.30826/icpcd13a23","DOIUrl":"https://doi.org/10.30826/icpcd13a23","url":null,"abstract":"The pulsed detonation gun technology for gasi¦cation of organic waste with ultrasuperheated steam [1, 2] has been demonstrated experimentally for the ¦rst time. The organic waste converter consisted of a pulsed detonation gun and water-cooled spherical §ow reactor (Fig. 1). Experiments on methane conversion as well as on the gasification of liquid (waste machine oil) and solid (sawdust) waste by the high-temperature gaseous detonation products of methane oxygen mixture were performed. The pulsed detonation gun was operated at a relatively low frequency of f = 1 Hz which provided a timeaveraged mean temperature of detonation products in a spherical §ow reactor at a level of 1200 K at a time-averaged absolute pressure in the reactor slightly higher than P = 1 atm. The novel technology was shown to provide complete (100%) conversion of methane into syngas containing H2 and CO with a ratio of H2/CO ≈ 1.25 2. Gasi¦cation of liquid and solid wastes led to the production of syngas containing reactive components H2, CO, and CH4 in the total amounts of 80 and 65 %(vol.) dry basis (d. b.), respectively. The corresponding H2/CO ratios in the product syngas were 0.8 and 0.5. Overall, experiments on methane conversion as well as liquid and solid waste gasi¦cation showed that under the same conditions at f = 1 Hz and P = 1 atm, the composition of syngas in terms of H2 and CO almost did not depend on the type of feedstock (Fig. 2).","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"134 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116588025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRITICAL CONDITIONS OF DROPLET PUFFING AND MICROEXPLOSION MODES 液滴膨化和微爆炸模式的临界条件
Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a12
D. Antonov, P. Strizhak
Microexplosion e¨ects in composite droplets make it possible to improve integral characteristics of secondary atomization processes in the combustion chamber, to increase completeness of fuel combustion, to reduce ignition time delay, and to diminish anthropogenic emissions [1]. The purpose of this work is experimental and theoretical research of critical conditions of pu©ng and microexplosion modes. The experimental research of microexplosion e¨ects in composite droplets was carried out by varying the temperature of the gaseous medium (473 1523 K) and atmospheric pressure [2]. The in§uence of the gaseous medium temperature and solid particles and gas bubbles concentrations on the time delay of droplets fragmentation were investigated. The droplet heating, evaporation, and breakup characteristics were recorded using a Phantom Miro high-speed slow-motion video camera with a frame rate of 2000 fps at 512 × 768-pixel resolution. The experimental video fragments were processed in the Phantom Camera Control software to analyze the initial droplet size before they enter the heating zone and to estimate the distance between them. The systematic errors in the measurement of these parameters did not exceed 0.025 and 0.05 mm, respectively. The problem of modeling pu©ng/microexplosion of composite water/fuel droplets was examined with using model for pu©ng/ microexplosions [3]. The most recent model [3] is based on the analytical solution to the one-dimensional heat transfer equation in a composite droplet assuming that a spherical water subdroplet is placed exactly in the center of a spherical fuel droplet. The analytical solution to this equation with the Robin boundary condition at the droplet surface was obtained, implemented into the numerical code, and used at each time step of the calculations. The e¨ects of thermal swelling and evaporation, using the Abramzon and Sirignano model, are considered. The developed mathematical apparatus can be helpful in developing high-temperature gas vapor drop technologies associated with ignition and combustion of liquid and slurry fuels.
复合液滴中的微爆炸效应可以改善燃烧室二次雾化过程的整体特性,提高燃料燃烧的完整性,减少点火延迟,减少人为排放。本工作的目的是对微爆炸模式的临界条件和微爆炸模式进行实验和理论研究。通过改变气体介质温度(473 ~ 1523 K)和大气压力([2]),对复合材料液滴中的微爆炸效应进行了实验研究。研究了气体介质温度、固体颗粒和气泡浓度对液滴破碎时间延迟的影响。采用幻影Miro高速慢动作摄像机,帧率为2000 fps,分辨率为512 × 768像素,记录了液滴的加热、蒸发和破裂特性。在Phantom Camera Control软件中对实验视频片段进行处理,分析它们进入加热区之前的初始液滴大小,并估计它们之间的距离。测量这些参数的系统误差分别不超过0.025和0.05 mm。采用聚©聚/微爆炸[3]模型,研究了聚©聚/微爆炸复合水/燃料滴的建模问题。最新的模型[3]是基于复合液滴一维传热方程的解析解,假设一个球形水子液滴正好位于球形燃料液滴的中心。得到了该方程在液滴表面具有Robin边界条件的解析解,并将其实现为数值代码,用于计算的每个时间步。利用Abramzon和Sirignano模型,考虑了热膨胀和蒸发的影响。所开发的数学装置可以帮助开发与液体和泥浆燃料点火和燃烧有关的高温气体蒸气降技术。
{"title":"CRITICAL CONDITIONS OF DROPLET PUFFING AND MICROEXPLOSION MODES","authors":"D. Antonov, P. Strizhak","doi":"10.30826/icpcd13a12","DOIUrl":"https://doi.org/10.30826/icpcd13a12","url":null,"abstract":"Microexplosion e¨ects in composite droplets make it possible to improve integral characteristics of secondary atomization processes in the combustion chamber, to increase completeness of fuel combustion, to reduce ignition time delay, and to diminish anthropogenic emissions [1]. The purpose of this work is experimental and theoretical research of critical conditions of pu©ng and microexplosion modes. The experimental research of microexplosion e¨ects in composite droplets was carried out by varying the temperature of the gaseous medium (473 1523 K) and atmospheric pressure [2]. The in§uence of the gaseous medium temperature and solid particles and gas bubbles concentrations on the time delay of droplets fragmentation were investigated. The droplet heating, evaporation, and breakup characteristics were recorded using a Phantom Miro high-speed slow-motion video camera with a frame rate of 2000 fps at 512 × 768-pixel resolution. The experimental video fragments were processed in the Phantom Camera Control software to analyze the initial droplet size before they enter the heating zone and to estimate the distance between them. The systematic errors in the measurement of these parameters did not exceed 0.025 and 0.05 mm, respectively. The problem of modeling pu©ng/microexplosion of composite water/fuel droplets was examined with using model for pu©ng/ microexplosions [3]. The most recent model [3] is based on the analytical solution to the one-dimensional heat transfer equation in a composite droplet assuming that a spherical water subdroplet is placed exactly in the center of a spherical fuel droplet. The analytical solution to this equation with the Robin boundary condition at the droplet surface was obtained, implemented into the numerical code, and used at each time step of the calculations. The e¨ects of thermal swelling and evaporation, using the Abramzon and Sirignano model, are considered. The developed mathematical apparatus can be helpful in developing high-temperature gas vapor drop technologies associated with ignition and combustion of liquid and slurry fuels.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125529353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIMULATION OF INTERACTION OF HETEROGENEOUS DETONATION WITH POROUS INSERT 非均质爆轰与多孔嵌片相互作用的模拟
Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a17
S. Lavruk, D. Tropin
Investigation of the process of a detonation wave (DW) interaction with various obstacles is a fundamental problem. This problem is relevant from the point of view of reducing the destructive e¨ects of heterogeneous explosions in technological disasters and in the studies of the process of de§agration-to-detonation transition and in detonation engines development. In this study, the authors tried to model the heterogeneous detonation of stoichiometric mixture of aluminum particles in oxygen with semi-in¦nite porous insert as a grid of stationary cylinders. The model is based on the system of Euler Euler equations for describing the interaction of continua including the laws of mass, momentum, and energy conservation for each of the phases and components closed by equations of state, momentum exchange (drag forces), and heat transfer between gas, particles, and porous body. Aluminum combustion is described as a reduced reaction initiated after the critical temperature is reached assuming incomplete particle burning. It was assumed that the porous zone is a continuous medium in the form of a grid of stationary cylinders. During the numerical simulation, some §ow regimes were obtained similar to those that were previously obtained in the study of the interaction of detonation waves with inert particles as well as with water sprays. There are regimes with a reduced DW velocity and regime with detonation failure with separation of shock wave and reaction front. Figure compares the results of one- (1D) and two-dimensional (2D) simulations of the propagation regimes of heterogeneous detonation of 1-micrometer aluminum particles in oxygen in a porous zone with a 200-micrometer cylinders. It can be seen that the results are quite similar to each other.
爆震波与各种障碍物相互作用过程的研究是一个基本问题。从减少技术灾害中非均质爆炸的破坏性影响的角度来看,这个问题与研究从爆炸到爆轰过渡的过程和爆轰发动机的研制都有关系。在这项研究中,作者试图模拟铝颗粒在氧中的化学计量混合物与半镍多孔插入物作为静止圆柱体网格的非均质爆轰。该模型基于欧拉欧拉方程系统,用于描述连续体的相互作用,包括质量,动量和能量守恒定律,每个相和由状态方程,动量交换(阻力)和气体,颗粒和多孔体之间的传热所封闭的组分。铝燃烧被描述为在达到临界温度后开始的还原反应,假设颗粒燃烧不完全。假定多孔区是一种固定圆柱网格形式的连续介质。在数值模拟过程中,得到了一些与先前在爆震波与惰性粒子以及与水喷雾相互作用的研究中得到的相似的低状态。冲击波与反应锋分离的爆轰失稳区和爆轰速度降低区。图中比较了1微米铝颗粒在含200微米圆柱体的多孔区中在氧气中的非均匀爆轰传播过程的一维和二维模拟结果。可以看出,结果是非常相似的。
{"title":"SIMULATION OF INTERACTION OF HETEROGENEOUS DETONATION WITH POROUS INSERT","authors":"S. Lavruk, D. Tropin","doi":"10.30826/icpcd13a17","DOIUrl":"https://doi.org/10.30826/icpcd13a17","url":null,"abstract":"Investigation of the process of a detonation wave (DW) interaction with various obstacles is a fundamental problem. This problem is relevant from the point of view of reducing the destructive e¨ects of heterogeneous explosions in technological disasters and in the studies of the process of de§agration-to-detonation transition and in detonation engines development. In this study, the authors tried to model the heterogeneous detonation of stoichiometric mixture of aluminum particles in oxygen with semi-in¦nite porous insert as a grid of stationary cylinders. The model is based on the system of Euler Euler equations for describing the interaction of continua including the laws of mass, momentum, and energy conservation for each of the phases and components closed by equations of state, momentum exchange (drag forces), and heat transfer between gas, particles, and porous body. Aluminum combustion is described as a reduced reaction initiated after the critical temperature is reached assuming incomplete particle burning. It was assumed that the porous zone is a continuous medium in the form of a grid of stationary cylinders. During the numerical simulation, some §ow regimes were obtained similar to those that were previously obtained in the study of the interaction of detonation waves with inert particles as well as with water sprays. There are regimes with a reduced DW velocity and regime with detonation failure with separation of shock wave and reaction front. Figure compares the results of one- (1D) and two-dimensional (2D) simulations of the propagation regimes of heterogeneous detonation of 1-micrometer aluminum particles in oxygen in a porous zone with a 200-micrometer cylinders. It can be seen that the results are quite similar to each other.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"412 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124400822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NUMERICAL MODELING OF NEAR-WALL SUPERSONIC MIXING USING IDDES APPROACH 近壁超声速混合的iddes数值模拟
Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a02
R. Solomatin, I. Semenov
Current research is devoted to the development of mathematical model and computational algorithms of supersonic mixing based on hybrid IDDES (improved delayed detached eddy simulation) turbulence approach and Spalart Allmaras turbulence model. Di¨usion and heat conduction processes are also taken into account. Time integration is carried out with explicit-implicit method, giving the second-order predictor-corrector scheme in the explicit region. Parallel realization of GMRES-LU-SGS (generalized minimum residual lower-upper symmetric Gauss Seidel) method is developed for solving the system of governing equations [1].
目前的研究主要集中在基于改进延迟分离涡模拟(IDDES)混合湍流方法和Spalart Allmaras湍流模型的超声速混合数学模型和计算算法的开发上。扩散和热传导过程也被考虑在内。采用显式-隐式方法进行时间积分,在显式区域给出二阶预测-校正格式。提出了求解控制方程组[1]的GMRES-LU-SGS(广义最小残差上下对称高斯塞德尔)方法的并行实现。
{"title":"NUMERICAL MODELING OF NEAR-WALL SUPERSONIC MIXING USING IDDES APPROACH","authors":"R. Solomatin, I. Semenov","doi":"10.30826/icpcd13a02","DOIUrl":"https://doi.org/10.30826/icpcd13a02","url":null,"abstract":"Current research is devoted to the development of mathematical model and computational algorithms of supersonic mixing based on hybrid IDDES (improved delayed detached eddy simulation) turbulence approach and Spalart Allmaras turbulence model. Di¨usion and heat conduction processes are also taken into account. Time integration is carried out with explicit-implicit method, giving the second-order predictor-corrector scheme in the explicit region. Parallel realization of GMRES-LU-SGS (generalized minimum residual lower-upper symmetric Gauss Seidel) method is developed for solving the system of governing equations [1].","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132536347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIMULATION OF INTERACTION OF HOMOGENEOUS HYDROGEN AIR DETONATION WITH POROUS FILTERS 均匀氢气空气爆轰与多孔过滤器相互作用的模拟
Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a16
D. Tropin, K. Vyshegorodcev
Explosions of combustible industrial gases and gas suspensions are one of the main causes of technological disasters. An example of the catastrophe is the explosion in the city of Kaohsiung, Taiwan, related with propylene leak in 2014. The explosion occurred during the transportation of propylene from the port to a chemical plant through a pipeline laid in underground utilities. One of the ways to prevent the catastrophic consequences of such incidents is to use inert components, for example, solid inert particles, porous ¦lters, or inert gas plugs to suppress detonation. In the present study, physical and mathematical modeling of the interaction of two-dimensional cellular detonation wave in hydrogen air mixture with inert porous ¦lters is performed. The model is based on the system of Euler equations describing the interaction of gas and ¦lters including the laws of mass, momentum, and energy conservation for each of the phases and components closed by equations of state, momentum exchange (drag forces), and heat transfer between gas and porous ¦lter. Hydrogen combustion is described by a reduced chemical kinetics. It was assumed that the porous ¦lter is a continuous medium in the form of a grid of stationary cylinders.
可燃性工业气体和气体悬浮液爆炸是造成技术灾害的主要原因之一。灾难的一个例子是2014年在台湾高雄市发生的与丙烯泄漏有关的爆炸。爆炸发生在丙烯通过铺设在地下公用设施中的管道从港口运往化工厂的过程中。防止此类事故灾难性后果的方法之一是使用惰性成分,例如固体惰性颗粒、多孔颗粒或惰性气体塞来抑制爆轰。本文对二维胞状爆震波在氢气混合空气中与惰性多孔粒子的相互作用进行了物理和数学模拟。该模型基于欧拉方程系统,该系统描述了气体和物质的相互作用,包括质量、动量和能量守恒定律,每个相和成分由状态方程、动量交换(阻力)和气体和多孔物质之间的热传递所封闭。氢的燃烧用简化的化学动力学来描述。假定多孔介质是一种以固定圆柱体网格形式存在的连续介质。
{"title":"SIMULATION OF INTERACTION OF HOMOGENEOUS HYDROGEN AIR DETONATION WITH POROUS FILTERS","authors":"D. Tropin, K. Vyshegorodcev","doi":"10.30826/icpcd13a16","DOIUrl":"https://doi.org/10.30826/icpcd13a16","url":null,"abstract":"Explosions of combustible industrial gases and gas suspensions are one of the main causes of technological disasters. An example of the catastrophe is the explosion in the city of Kaohsiung, Taiwan, related with propylene leak in 2014. The explosion occurred during the transportation of propylene from the port to a chemical plant through a pipeline laid in underground utilities. One of the ways to prevent the catastrophic consequences of such incidents is to use inert components, for example, solid inert particles, porous ¦lters, or inert gas plugs to suppress detonation. In the present study, physical and mathematical modeling of the interaction of two-dimensional cellular detonation wave in hydrogen air mixture with inert porous ¦lters is performed. The model is based on the system of Euler equations describing the interaction of gas and ¦lters including the laws of mass, momentum, and energy conservation for each of the phases and components closed by equations of state, momentum exchange (drag forces), and heat transfer between gas and porous ¦lter. Hydrogen combustion is described by a reduced chemical kinetics. It was assumed that the porous ¦lter is a continuous medium in the form of a grid of stationary cylinders.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128471594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PULSED AND CONTINUOUS DETONATIONS: OVERVIEW OF AVAILABLE PATENTS FOR 50 YEARS 脉冲和连续爆炸:50年可用专利概述
Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a18
K. A. Avdeev, S. Frolov, V. Zvegintsev
Pulsed and continuous detonation of motor fuel o¨ers the most ef- ¦cient fuel utilization in combustion process and allows increasing the e©ciency of jet engines by achieving a lower entropy of expanded combustion products compared to the conventional combustion process at constant pressure [1]. In the last two decades, research and development work aimed at creating various types of jet engines with controlled detonation of motor fuel has been actively carried out worldwide. The paper will provide the thorough analysis of patents on the various designs of pulsed detonation (Fig. 1) and continuous-detonation (Fig. 2) engines as well as the various methods for organizing the operation process in such engines. The main research and technical problems of creating practical detonation engines are identi¦ed. These include low detonability of standard motor fuels, thermal protection and cooling, cyclic loads, vibrations, and noise. The most promising approaches to solving some of these problems have been reported and discussed. Thus, for enhancing fuel detonability in terms of shortening de§agtation-to-detonation (DDT) run-up distance and time, the concept of fast DDT [4] can be used. However, despite some progress in this ¦eld of science and technology, most of the problems have not yet been fully resolved.
发动机燃料的脉冲和连续爆轰是燃烧过程中最有效的燃料利用,与传统的恒压燃烧过程相比,通过实现更低的膨胀燃烧产物熵,可以提高喷气发动机的效率[1]。在过去的二十年里,世界各地都在积极开展研究和开发工作,旨在制造各种类型的发动机燃料控制爆震的喷气发动机。本文将对脉冲爆震(图1)和连续爆震(图2)发动机的各种设计专利进行深入分析,以及在这类发动机中组织操作过程的各种方法。指出了制造实用爆震发动机的主要研究和技术问题。这些包括标准发动机燃料的低爆震性、热保护和冷却、循环载荷、振动和噪音。解决其中一些问题的最有希望的方法已经被报道和讨论过。因此,为了在缩短聚爆(DDT)助燃距离和时间方面提高燃料的爆轰性,可以采用快速DDT的概念[4]。然而,尽管这一科学技术领域取得了一些进展,但大多数问题尚未完全解决。
{"title":"PULSED AND CONTINUOUS DETONATIONS: OVERVIEW OF AVAILABLE PATENTS FOR 50 YEARS","authors":"K. A. Avdeev, S. Frolov, V. Zvegintsev","doi":"10.30826/icpcd13a18","DOIUrl":"https://doi.org/10.30826/icpcd13a18","url":null,"abstract":"Pulsed and continuous detonation of motor fuel o¨ers the most ef- ¦cient fuel utilization in combustion process and allows increasing the e©ciency of jet engines by achieving a lower entropy of expanded combustion products compared to the conventional combustion process at constant pressure [1]. In the last two decades, research and development work aimed at creating various types of jet engines with controlled detonation of motor fuel has been actively carried out worldwide. The paper will provide the thorough analysis of patents on the various designs of pulsed detonation (Fig. 1) and continuous-detonation (Fig. 2) engines as well as the various methods for organizing the operation process in such engines. The main research and technical problems of creating practical detonation engines are identi¦ed. These include low detonability of standard motor fuels, thermal protection and cooling, cyclic loads, vibrations, and noise. The most promising approaches to solving some of these problems have been reported and discussed. Thus, for enhancing fuel detonability in terms of shortening de§agtation-to-detonation (DDT) run-up distance and time, the concept of fast DDT [4] can be used. However, despite some progress in this ¦eld of science and technology, most of the problems have not yet been fully resolved.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123603384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
О МЕХАНИЗМЕ АЭРОАКУСТИЧЕСКОЕО ИНИЦИИРОВАНИЯ ПУЛВСИРУЮЩЕЕО КВАЗИДЕТОНАЦИОННОЕО ЕОРЕНИЯ В ЭЖЕКТОРНОМ ПУЛВСИРУЮЩЕМ ВОЗДУШНО-РЕАКТИВНОМ ДВИЕАТЕЛЕ 气声启动装置,在喷射式空气喷气发动机中启动准引爆装置
Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a20
К.В. Мигалин, А. К. Сиденко
Сегодня известны два метода поддержания пульсирующего горения в пульсирующем воздушно-реактивном двигателе (ПуВРД): (1) акустический, он реализуется в условиях акустического резонанса газохода; (2) релаксационный, базируется на основе использования различного рода механических устройств пульсирующей подачи топлива или воздуха. К настоящему времени известно только о нескольких разработках детонационных двигателей, реализующих второй способ поддержания пульсирующего горения. Одна из них, прошедшая стадию бросковых испытаний, описана в [1]. Эти двигатели реализуют продольную детонацию в газоходе и требуют его большой длины. Авторами найден третий метод поддержания пульсирующего горения в бесклапанном ПуВРД, при котором возможен переход к редкому виду детонационного или квазидетонационного горения — сферической детонации. Такой метод поддержания пульсирующего горения возможен в двигателях, имеющих специфическую внутреннюю аэродинамику течения, формируемую специальной конструкцией газохода. Приведены результаты аэроакустических исследований газоходов малоизвестного типа двигателей — эжекторных двухконтурных ПуВРД (ЭДПуВРД). Показано, что конфигурация газохода с двойным изломом приводит к сложной вихревой структуре внутреннего течения, которая подвержена влиянию акустических колебаний [2]. Подбором частоты акустического резонанса газохода производится настройка на частоту собственных колебаний внутренних вихревых течений, чем достигается появление прецессии вихревого течения. Циклический выброс из нее продуктов сгорания, являясь мощным источником воспламенения, в свою очередь провоцирует переход к детонационному горению. В случае работы в режиме дефлаграционного горения с применением бензина А-76 или керосина РТ двигатели рассматриваемого типоразмера демонстрируют устойчивую работу в диапазоне скоростей до М = 1,5 и выше, развивая тягу 170–220 кГс. Удельная тяга по топливу при этом достигает 1500 с при весе двигателя 22–24 кг. Основные преимуществами ЭДПуВРД — простота конструкции и невысокая стоимость, что на фоне масштабного вырождения турбинных датчиков расхода турбореактивных двигателей в классе двигателей малых тяг расширяет нишу его возможного применения.
目前已知的两种方法是在脉动喷气发动机(pvd)中维持脉动燃烧:(1)声学燃烧,在气体的声学共振下实现;(2)松弛,基于使用各种机械装置来提供燃料或空气。到目前为止,我们所知道的只有少数几个雷管设计,它们实现了第二种维持脉动燃烧的方法。其中一个经历了投掷测试阶段,描述为[1]。这些发动机在燃气管道中进行纵向爆炸,需要很长时间。作者发现了第三种方法,在无阀门的引信中维持脉动燃烧,这可能会导致罕见的引爆或准引爆燃烧——球形爆炸。这种支持脉动燃烧的方法可以在具有特定内部气流动力学的发动机中找到。这是一种鲜为人知的发动机类型的气声研究的结果——喷射器双回路。= =结构= =气流的配置显示了一个复杂的涡流结构,受到声波振动的影响。气体声学共振的频率被调整到内部涡流自身波动的频率上,从而达到涡流的特异性。燃烧产物的循环排放是一种强大的导火索,反过来又会引发爆炸燃烧。在使用汽油a -76或煤油的情况下,示范引擎的速度可达1.5米以上,产生170 - 220千赫推力。燃料单位推力达到1500,发动机重量为22 - 24公斤。edpuld的主要优点是简单的设计和低成本,考虑到涡轮增压传感器在低推力引擎类中的损耗,它扩大了可能使用的利基。
{"title":"О МЕХАНИЗМЕ АЭРОАКУСТИЧЕСКОЕО ИНИЦИИРОВАНИЯ ПУЛВСИРУЮЩЕЕО КВАЗИДЕТОНАЦИОННОЕО ЕОРЕНИЯ В ЭЖЕКТОРНОМ ПУЛВСИРУЮЩЕМ ВОЗДУШНО-РЕАКТИВНОМ ДВИЕАТЕЛЕ","authors":"К.В. Мигалин, А. К. Сиденко","doi":"10.30826/icpcd13a20","DOIUrl":"https://doi.org/10.30826/icpcd13a20","url":null,"abstract":"Сегодня известны два метода поддержания пульсирующего горения в пульсирующем воздушно-реактивном двигателе (ПуВРД): (1) акустический, он реализуется в условиях акустического резонанса газохода; (2) релаксационный, базируется на основе использования различного рода механических устройств пульсирующей подачи топлива или воздуха. К настоящему времени известно только о нескольких разработках детонационных двигателей, реализующих второй способ поддержания пульсирующего горения. Одна из них, прошедшая стадию бросковых испытаний, описана в [1]. Эти двигатели реализуют продольную детонацию в газоходе и требуют его большой длины. Авторами найден третий метод поддержания пульсирующего горения в бесклапанном ПуВРД, при котором возможен переход к редкому виду детонационного или квазидетонационного горения — сферической детонации. Такой метод поддержания пульсирующего горения возможен в двигателях, имеющих специфическую внутреннюю аэродинамику течения, формируемую специальной конструкцией газохода. Приведены результаты аэроакустических исследований газоходов малоизвестного типа двигателей — эжекторных двухконтурных ПуВРД (ЭДПуВРД). Показано, что конфигурация газохода с двойным изломом приводит к сложной вихревой структуре внутреннего течения, которая подвержена влиянию акустических колебаний [2]. Подбором частоты акустического резонанса газохода производится настройка на частоту собственных колебаний внутренних вихревых течений, чем достигается появление прецессии вихревого течения. Циклический выброс из нее продуктов сгорания, являясь мощным источником воспламенения, в свою очередь провоцирует переход к детонационному горению. В случае работы в режиме дефлаграционного горения с применением бензина А-76 или керосина РТ двигатели рассматриваемого типоразмера демонстрируют устойчивую работу в диапазоне скоростей до М = 1,5 и выше, развивая тягу 170–220 кГс. Удельная тяга по топливу при этом достигает 1500 с при весе двигателя 22–24 кг. Основные преимуществами ЭДПуВРД — простота конструкции и невысокая стоимость, что на фоне масштабного вырождения турбинных датчиков расхода турбореактивных двигателей в классе двигателей малых тяг расширяет нишу его возможного применения.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114031446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IMPROVEMENT OF IGNITION SYSTEM OF DETONATION ENGINES WITH AN INITIATED MICROWAVE SUBCRITICAL STREAMER DISCHARGE 微波亚临界流点火对爆震发动机点火系统的改进
Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a05
P. Bulat, I. Esakov, L. Grachev, M. Renev, K. Volkov, I. Volobuev
Pulsed detonation engines are considered to be the promising e¨ective propulsion systems for future space missions. The ignition system has always posed problems in commercial applications. Many experimental, theoretical, and numerical studies have been performed for the past years and various ignition systems (e. g., electric discharge, microwave discharge, laser radiation) have been tested. The propulsive performance of air-breathing pulsed detonation engines (PDEs) has been theoretically and numerically studied over a wide range of system con¦gurations, operating parameters, and §ight conditions. It has been suggested that discharges which create the quickest expanding high-temperature region or discharges which occupy a large volume are optimal for ignition because they can most rapidly and reliably bring the radius of the ignition kernel to its critical value for transition into a self-propagating §ame. Signi¦cant e¨orts are being spent on acceleration of fuel combustion and rising its e©ciency. Existing studies have mainly focused on optimizing fuel injection and mixing, repetitive initiation of detonation, and integration of detonation tubes with fuel inlets. Understanding of streamer propagation mechanism is of essential importance for the studies of electrical breakdown phenomena and their related applications. In this study, a subcritical microwave streamer discharge is used to initiate ignition of air fuel mixtures. The study focuses on investigation of possibilities of the use of microwave radiation to initiate combustion and detonation of air fuel mixtures. The results of experimental and computational studies related combustion and detonation of air propane mixture are presented. To initiate the combustion and detonation, the deep subcritical streamer discharge is used. The discharge is formed by a ¦eld with the intensity smaller than the minimum pulse intensity leading to the gas breakdown. An acceleration of combustion and a uniform temperature front are obtained and the possibility of combustion of fuel-lean mixture is con¦rmed. An increase in combustion e©ciency is also observed. Streamer discharge ignition of particularly lean air fuel mixture with air-to-fuel ratio greater than the §ammability limit has been demonstrated under normal conditions. The indirect evidence suggests that the ignition by the microwave discharge is of the nonthermal nature. The advantages of igniting the fuel mixture by streamer discharge is attributed to the ultraviolet radiation emitted by oxygen atoms subjected to the discharge. The ultraviolet radiation generation causes formation of the nonequilibrium cold plasma with avalanche increase in the number of free electrons. The microwave streamer ignition can be considered for the application in internal combustion engines to replace the conventional spark ignition.
脉冲爆震发动机被认为是未来空间任务中最有前途的有效推进系统。点火系统在商业应用中一直存在问题。许多实验、理论和数值研究已经在过去的几年中进行了,各种点火系统(例如,放电、微波放电、激光辐射)已经进行了测试。吸气式脉冲爆震发动机(PDEs)的推进性能在理论和数值上进行了广泛的系统配置、工作参数和光照条件下的研究。有研究表明,产生高温扩展最快的放电或占据较大体积的放电是最适合点火的,因为它们能最迅速、最可靠地使点火核半径达到过渡到自传播过程的临界值。在加速燃料燃烧和提高其能效方面,人们正投入大量精力。现有的研究主要集中在优化燃油喷射和混合、重复起爆以及爆震管与燃油入口的集成等方面。了解流的传播机制对研究电击穿现象及其相关应用具有重要意义。在本研究中,使用亚临界微波流放电来引发空气燃料混合物的点火。这项研究的重点是调查利用微波辐射引发空气燃料混合物燃烧和爆轰的可能性。介绍了空气丙烷混合气燃烧爆轰的实验和计算结果。为了启动燃烧和爆震,采用了深亚临界流放电。放电由强度小于最小脉冲强度的电场形成,导致气体击穿。得到了燃烧加速和均匀温度锋,证实了贫油混合气燃烧的可能性。燃烧效率的提高也被观察到。在正常条件下,证明了空气-燃料比大于§ammability极限的特别稀薄的空气燃料混合物的拖流放电点火。间接证据表明,微波放电的点火是非热性质的。流光放电点燃混合燃料的优点是由于受到流光放电的氧原子所发出的紫外线辐射。紫外辐射的产生导致非平衡冷等离子体的形成,自由电子数量雪崩式增加。可以考虑在内燃机上应用微波流点火技术来代替传统的火花点火。
{"title":"IMPROVEMENT OF IGNITION SYSTEM OF DETONATION ENGINES WITH AN INITIATED MICROWAVE SUBCRITICAL STREAMER DISCHARGE","authors":"P. Bulat, I. Esakov, L. Grachev, M. Renev, K. Volkov, I. Volobuev","doi":"10.30826/icpcd13a05","DOIUrl":"https://doi.org/10.30826/icpcd13a05","url":null,"abstract":"Pulsed detonation engines are considered to be the promising e¨ective propulsion systems for future space missions. The ignition system has always posed problems in commercial applications. Many experimental, theoretical, and numerical studies have been performed for the past years and various ignition systems (e. g., electric discharge, microwave discharge, laser radiation) have been tested. The propulsive performance of air-breathing pulsed detonation engines (PDEs) has been theoretically and numerically studied over a wide range of system con¦gurations, operating parameters, and §ight conditions. It has been suggested that discharges which create the quickest expanding high-temperature region or discharges which occupy a large volume are optimal for ignition because they can most rapidly and reliably bring the radius of the ignition kernel to its critical value for transition into a self-propagating §ame. Signi¦cant e¨orts are being spent on acceleration of fuel combustion and rising its e©ciency. Existing studies have mainly focused on optimizing fuel injection and mixing, repetitive initiation of detonation, and integration of detonation tubes with fuel inlets. Understanding of streamer propagation mechanism is of essential importance for the studies of electrical breakdown phenomena and their related applications. In this study, a subcritical microwave streamer discharge is used to initiate ignition of air fuel mixtures. The study focuses on investigation of possibilities of the use of microwave radiation to initiate combustion and detonation of air fuel mixtures. The results of experimental and computational studies related combustion and detonation of air propane mixture are presented. To initiate the combustion and detonation, the deep subcritical streamer discharge is used. The discharge is formed by a ¦eld with the intensity smaller than the minimum pulse intensity leading to the gas breakdown. An acceleration of combustion and a uniform temperature front are obtained and the possibility of combustion of fuel-lean mixture is con¦rmed. An increase in combustion e©ciency is also observed. Streamer discharge ignition of particularly lean air fuel mixture with air-to-fuel ratio greater than the §ammability limit has been demonstrated under normal conditions. The indirect evidence suggests that the ignition by the microwave discharge is of the nonthermal nature. The advantages of igniting the fuel mixture by streamer discharge is attributed to the ultraviolet radiation emitted by oxygen atoms subjected to the discharge. The ultraviolet radiation generation causes formation of the nonequilibrium cold plasma with avalanche increase in the number of free electrons. The microwave streamer ignition can be considered for the application in internal combustion engines to replace the conventional spark ignition.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114978772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AFTERBURNER WITH CONTINUOUS DETONATION OF LIQUID FUEL 加力燃烧器与连续爆轰液体燃料
Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a22
S. Frolov, V. Ivanov, I. O. Shamshin, V. S. Aksenov, M. Vovk, I. V. Mokrynskij, V. A. Bruskov, D. Igonkin, S. N. Moskvitin, A. Illarionov, E. Marchukov
The results of a new series of test ¦res of a detonation afterburner as part of turbojet engine are presented. In contrast to previous tests with a sequential arrangement of turbojet and afterburner [1], the new series provides for gasdynamic separation of air§ows: air is supplied to the afterburner separately using an auxiliary power unit simulating the bypass air§ow in a turbofan engine (Fig. 1). The separation of air§ows made it possible to ensure stable operation of the combined power plant in di¨erent modes of operation of the turbojet engine when the afterburner was turned on. In test ¦res, a stable mode of spinning detonation of aviation kerosene with single detonation wave was registered with a characteristic rotation frequency of 2 kHz (Fig. 2) and the detonative combustion of kerosene in the afterburner did not a¨ect the operation of the turbojet engine.
介绍了一种新型涡轮喷气发动机爆轰加力燃烧室的一系列试验结果。与以往采用涡轮喷气发动机和加力燃烧室顺序排列的试验[1]不同,新系列提供了空气动力学分离:使用模拟涡轮风扇发动机旁路空气流的辅助动力单元分别向加力燃烧室提供空气(图1)。空气流的分离使得在加力燃烧室开启时,在涡轮喷气发动机的不同运行模式下,联合动力装置能够稳定运行。在试验中,以2 kHz的特征旋转频率记录了航空煤油单爆轰波的稳定旋转爆轰模式(图2),煤油在加力燃烧室的爆轰燃烧不影响涡轮喷气发动机的工作。
{"title":"AFTERBURNER WITH CONTINUOUS DETONATION OF LIQUID FUEL","authors":"S. Frolov, V. Ivanov, I. O. Shamshin, V. S. Aksenov, M. Vovk, I. V. Mokrynskij, V. A. Bruskov, D. Igonkin, S. N. Moskvitin, A. Illarionov, E. Marchukov","doi":"10.30826/icpcd13a22","DOIUrl":"https://doi.org/10.30826/icpcd13a22","url":null,"abstract":"The results of a new series of test ¦res of a detonation afterburner as part of turbojet engine are presented. In contrast to previous tests with a sequential arrangement of turbojet and afterburner [1], the new series provides for gasdynamic separation of air§ows: air is supplied to the afterburner separately using an auxiliary power unit simulating the bypass air§ow in a turbofan engine (Fig. 1). The separation of air§ows made it possible to ensure stable operation of the combined power plant in di¨erent modes of operation of the turbojet engine when the afterburner was turned on. In test ¦res, a stable mode of spinning detonation of aviation kerosene with single detonation wave was registered with a characteristic rotation frequency of 2 kHz (Fig. 2) and the detonative combustion of kerosene in the afterburner did not a¨ect the operation of the turbojet engine.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"335 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132981130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEFLAGRATION-TO-DETONATION TRANSITION IN STOICHIOMETRIC BINARY HYDROCARBON (METHANE, PROPANE, ETHYLENE) HYDROGENBLENDS IN AIR 空气中化学计量二元烃(甲烷、丙烷、乙烯)氢混合物的爆燃-爆轰转变
Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a01
I. O. Shamshin, M. V. Kazachenko, S. Frolov, V. Basevich
Systematic experimental studies of de§agration-to-detonation transition (DDT) in binary hydrocarbon (methane, propane, ethylene) hydrogen air mixtures of stoichiometric composition with hydrogen volume fraction xH2 varied from 0 to 1 are conducted at normal pressure and temperature conditions in a pulse-detonation tube of three geometrical con¦gurations: C1, C2, and C3 (Fig. 1). Contrary to expectations based on the well-known high reactivity of hydrogen, the measured dependences of the DDT run-up distance LDDT and time τDDT on xH2 are shown to be highly nonlinear [1 3]. Thus, in methane hydrogen air mixtures, with an increase in xH2 , the DDT run-up distance changes nonmonotonically: in the range 0.25 < xH2 < 0.65, the dependences LDDT(xH2 ) can have local maxima, i. e., the detonability of such fuel air mixtures deteriorates with the addition of hydrogen (Fig. 2a). In propane hydrogen airmixtures, the measured dependences of the DDT run-up distance appear to be nonlinear and nonmonotonic (in some cases): mixture detonability increases sharply only at relatively large hydrogen content (at xH2 > 0.7) (Fig. 2b). Finally, in ethylene hydrogen air mixtures, hydrogen addition to ethylene at 0 ≤ xH2 ≤ 0.7 results in no variation of mixture detonability in terms of DDT run-up distance (Fig. 2c). However, hydrogen addition to ethylene at xH2 > 0.7 results in a drastic increase of mixture detonability. Since various modi¦cations of tube design do not affect the character of the dependences, these e¨ects are attributed to the physicochemical properties of the mixtures. In general, based on the similarity of the experimental results for methane hydrogen air, propane hydrogen air, and ethylene hydrogen air mixtures obtained using the same experimental facilities and conditions, one can conclude that such unexpected dependences are caused by chemical and physical properties of hydrogen, namely, its temperature and pressure dependent reactivity in terms of the laminar §ame velocity, selfignition delay, etc., as well as its low molecular mass.
在常压和常温条件下,在三种几何浓度的脉冲爆轰管中,系统地研究了化学计量成分为氢体积分数xH2为0 ~ 1的二元烃(甲烷、丙烷、乙烯)氢空气混合物中从聚合到爆轰转变(DDT)的实验研究。C1, C2和C3(图1)。与基于众所周知的氢的高反应性的预期相反,测量到的DDT上升距离LDDT和时间τDDT对xH2的依赖关系显示为高度非线性[13]。因此,在甲烷氢空气混合物中,随着xH2的增加,DDT的助燃距离发生非单调变化:在0.25 < xH2 < 0.65范围内,LDDT(xH2)的依赖性会出现局部最大值,即这种燃料空气混合物的爆轰性随着氢气的加入而恶化(图2a)。在丙烷-氢混合空气中,DDT助燃距离的测量依赖关系似乎是非线性和非单调的(在某些情况下):混合物的爆轰性只有在相对较大的氢含量(xH2 > 0.7)时才会急剧增加(图2b)。最后,在乙烯-氢空气混合物中,在0≤xH2≤0.7的条件下,氢气加入乙烯,混合气的爆轰性在DDT助燃距离上没有变化(图2c)。而在xH2 > 0.7的条件下,乙烯加氢会导致混合物爆轰性的急剧增加。由于管设计的各种变化不影响依赖性的特征,这些影响归因于混合物的物理化学性质。一般来说,基于使用相同的实验设备和条件获得的甲烷氢空气、丙烷氢空气和乙烯氢空气混合物的实验结果的相似性,可以得出这样的结论:这种意想不到的依赖性是由氢的化学和物理性质引起的,即它的温度和压力依赖于层流速度、自燃延迟等方面的反应性,以及它的低分子质量。
{"title":"DEFLAGRATION-TO-DETONATION TRANSITION IN STOICHIOMETRIC BINARY HYDROCARBON (METHANE, PROPANE, ETHYLENE) HYDROGENBLENDS IN AIR","authors":"I. O. Shamshin, M. V. Kazachenko, S. Frolov, V. Basevich","doi":"10.30826/icpcd13a01","DOIUrl":"https://doi.org/10.30826/icpcd13a01","url":null,"abstract":"Systematic experimental studies of de§agration-to-detonation transition (DDT) in binary hydrocarbon (methane, propane, ethylene) hydrogen air mixtures of stoichiometric composition with hydrogen volume fraction xH2 varied from 0 to 1 are conducted at normal pressure and temperature conditions in a pulse-detonation tube of three geometrical con¦gurations: C1, C2, and C3 (Fig. 1). Contrary to expectations based on the well-known high reactivity of hydrogen, the measured dependences of the DDT run-up distance LDDT and time τDDT on xH2 are shown to be highly nonlinear [1 3]. Thus, in methane hydrogen air mixtures, with an increase in xH2 , the DDT run-up distance changes nonmonotonically: in the range 0.25 < xH2 < 0.65, the dependences LDDT(xH2 ) can have local maxima, i. e., the detonability of such fuel air mixtures deteriorates with the addition of hydrogen (Fig. 2a). In propane hydrogen airmixtures, the measured dependences of the DDT run-up distance appear to be nonlinear and nonmonotonic (in some cases): mixture detonability increases sharply only at relatively large hydrogen content (at xH2 > 0.7) (Fig. 2b). Finally, in ethylene hydrogen air mixtures, hydrogen addition to ethylene at 0 ≤ xH2 ≤ 0.7 results in no variation of mixture detonability in terms of DDT run-up distance (Fig. 2c). However, hydrogen addition to ethylene at xH2 > 0.7 results in a drastic increase of mixture detonability. Since various modi¦cations of tube design do not affect the character of the dependences, these e¨ects are attributed to the physicochemical properties of the mixtures. In general, based on the similarity of the experimental results for methane hydrogen air, propane hydrogen air, and ethylene hydrogen air mixtures obtained using the same experimental facilities and conditions, one can conclude that such unexpected dependences are caused by chemical and physical properties of hydrogen, namely, its temperature and pressure dependent reactivity in terms of the laminar §ame velocity, selfignition delay, etc., as well as its low molecular mass.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121048008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ADVANCES IN DETONATION RESEARCH
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1