New results of Quick Learning for Bidirectional Associative Memory having high capacity

M. Hattori, M. Hagiwara, M. Nakagawa
{"title":"New results of Quick Learning for Bidirectional Associative Memory having high capacity","authors":"M. Hattori, M. Hagiwara, M. Nakagawa","doi":"10.1109/ICNN.1994.374333","DOIUrl":null,"url":null,"abstract":"Several important characteristics of Quick Learning for Bidirectional Associative Memory (QLBAM) are introduced. QLBAM uses two stage learning. In the first stage, the BAM is trained by Hebbian learning and then by Pseudo-Relaxation Learning Algorithm for BAM (PRLAB). The following features of the QLBAM are made clear: it is insensitive to correlation of training pairs; it is robust for noisy inputs; the minimum absolute value of net inputs indexes a noise margin; the memory capacity is greatly improved: the maximum capacity in our simulation is about 2.2N.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"4 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Several important characteristics of Quick Learning for Bidirectional Associative Memory (QLBAM) are introduced. QLBAM uses two stage learning. In the first stage, the BAM is trained by Hebbian learning and then by Pseudo-Relaxation Learning Algorithm for BAM (PRLAB). The following features of the QLBAM are made clear: it is insensitive to correlation of training pairs; it is robust for noisy inputs; the minimum absolute value of net inputs indexes a noise margin; the memory capacity is greatly improved: the maximum capacity in our simulation is about 2.2N.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高容量双向联想记忆快速学习的新结果
介绍了双向联想记忆快速学习的几个重要特点。QLBAM使用两阶段学习。首先采用Hebbian学习对BAM进行训练,然后采用伪松弛学习算法对BAM进行训练。明确了QLBAM的以下特点:对训练对的相关性不敏感;它对噪声输入具有鲁棒性;净输入的最小绝对值表示噪声裕度;大大提高了内存容量:在我们的模拟中最大容量约为2.2N.>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1