Automatic extraction of drug-drug interaction from literature through detecting clause dependency and linguistic-based negation

Behrouz Bokharaeian, Alberto Díaz
{"title":"Automatic extraction of drug-drug interaction from literature through detecting clause dependency and linguistic-based negation","authors":"Behrouz Bokharaeian, Alberto Díaz","doi":"10.1109/SPIS.2015.7422306","DOIUrl":null,"url":null,"abstract":"Extracting biomedical relations such as drug-drug interaction (DDI) from text is an important task in biomedical NLP. Due to the large number of complex sentences in biomedical literature, researchers have employed some sentence simplification techniques to improve the performance of the relation extraction methods. However, due to difficulty of the task, there is no noteworthy improvement in the research literature. This paper aims to explore clause dependency related features alongside to linguistic-based negation scope and cues to overcome complexity of the sentences. The experiments indicate the ratio of negation cues which is another source of inaccuracy is higher in complex sentences in comparison with simple ones. Additionally, the results show by employing the proposed features combined with a bag of words kernel, the performance of the used kernel methods improves. Moreover, experiments show the enhanced local context kernel outperforms other methods. The proposed method can be used as an alternative approach for sentence simplification techniques in biomedical area which is an error-prone task.","PeriodicalId":424434,"journal":{"name":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIS.2015.7422306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extracting biomedical relations such as drug-drug interaction (DDI) from text is an important task in biomedical NLP. Due to the large number of complex sentences in biomedical literature, researchers have employed some sentence simplification techniques to improve the performance of the relation extraction methods. However, due to difficulty of the task, there is no noteworthy improvement in the research literature. This paper aims to explore clause dependency related features alongside to linguistic-based negation scope and cues to overcome complexity of the sentences. The experiments indicate the ratio of negation cues which is another source of inaccuracy is higher in complex sentences in comparison with simple ones. Additionally, the results show by employing the proposed features combined with a bag of words kernel, the performance of the used kernel methods improves. Moreover, experiments show the enhanced local context kernel outperforms other methods. The proposed method can be used as an alternative approach for sentence simplification techniques in biomedical area which is an error-prone task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过检测子句依赖性和基于语言的否定,从文献中自动提取药物-药物相互作用
从文本中提取药物-药物相互作用(DDI)等生物医学关系是生物医学自然语言处理中的重要任务。由于生物医学文献中复杂句子较多,研究人员采用了一些句子简化技术来提高关系提取方法的性能。然而,由于任务的难度,研究文献中没有明显的改进。本文旨在探讨子句依赖相关特征以及基于语言的否定范围和线索,以克服句子的复杂性。实验表明,否定提示在复杂句中的比例高于简单句,否定提示是导致错误的另一个原因。此外,结果表明,将所提出的特征与袋词核相结合,所使用的核方法的性能得到了提高。此外,实验表明,增强的局部上下文核优于其他方法。该方法可作为一种替代方法,用于易出错的生物医学领域的句子简化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User-friendly visual secret sharing based on random grids An adaptive single image method for super resolution An improved DV-Hop localization algorithm in wireless sensor networks Optimization of the low-cost INS/GPS navigation system using ANFIS for high speed vehicle application A novel compressed sensing DOA estimation using difference set codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1