Improving performance of automatic program repair using learned heuristics

Liam Schramm
{"title":"Improving performance of automatic program repair using learned heuristics","authors":"Liam Schramm","doi":"10.1145/3106237.3121281","DOIUrl":null,"url":null,"abstract":"Automatic program repair offers the promise of significant reduction in debugging time, but still faces challenges in making the process efficient, accurate, and generalizable enough for practical application. Recent efforts such as Prophet demonstrate that machine learning can be used to develop heuristics about which patches are likely to be correct, reducing overfitting problems and improving speed of repair. SearchRepair takes a different approach to accuracy, using blocks of human-written code as patches to better constrain repairs and avoid overfitting. This project combines Prophet's learning techniques with SearchRepair's larger block size to create a method that is both fast and accurate, leading to higher-quality repairs. We propose a novel first-pass filter to substantially reduce the number of candidate patches in SearchRepair and demonstrate 85% reduction in runtime over standard SearchRepair on the IntroClass dataset.","PeriodicalId":313494,"journal":{"name":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106237.3121281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Automatic program repair offers the promise of significant reduction in debugging time, but still faces challenges in making the process efficient, accurate, and generalizable enough for practical application. Recent efforts such as Prophet demonstrate that machine learning can be used to develop heuristics about which patches are likely to be correct, reducing overfitting problems and improving speed of repair. SearchRepair takes a different approach to accuracy, using blocks of human-written code as patches to better constrain repairs and avoid overfitting. This project combines Prophet's learning techniques with SearchRepair's larger block size to create a method that is both fast and accurate, leading to higher-quality repairs. We propose a novel first-pass filter to substantially reduce the number of candidate patches in SearchRepair and demonstrate 85% reduction in runtime over standard SearchRepair on the IntroClass dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用学习启发式改进自动程序修复的性能
自动程序修复提供了显著减少调试时间的承诺,但仍然面临着使过程高效、准确和足以用于实际应用的通用性的挑战。Prophet等最近的努力表明,机器学习可以用来开发启发式方法,判断哪些补丁可能是正确的,从而减少过拟合问题,提高修复速度。SearchRepair采用不同的方法来提高准确性,使用人工编写的代码块作为补丁,以更好地约束修复并避免过拟合。该项目将Prophet的学习技术与SearchRepair更大的块大小相结合,创造了一种既快速又准确的方法,从而实现了更高质量的修复。我们提出了一种新的第一遍过滤器,以大幅减少SearchRepair中的候选补丁数量,并证明在IntroClass数据集上比标准SearchRepair减少85%的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Serverless computing: economic and architectural impact The rising tide lifts all boats: the advancement of science in cyber security (invited talk) User- and analysis-driven context aware software development in mobile computing Continuous variable-specific resolutions of feature interactions Attributed variability models: outside the comfort zone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1