Identification of type of internal fault in indirect symmetrical phase shift transformer based on PRN

S. Bhasker, M. Tripathy, Vishal Kumar
{"title":"Identification of type of internal fault in indirect symmetrical phase shift transformer based on PRN","authors":"S. Bhasker, M. Tripathy, Vishal Kumar","doi":"10.1109/POWERI.2016.8077332","DOIUrl":null,"url":null,"abstract":"This paper describes a technique for the detection of type of internal fault in an indirect symmetrical phase shift transformer (ISPST). An application of Pattern Recognition Network (PRN) is proposed as a core classifier to identify the type of internal fault. Four type of internal faults (turn-to-turn (TT), line-to-ground (LG), two line-to-ground (LLG), and three line-to-ground (LLLG)) have been classified. Numerous test cases of internal fault in an ISPST have been using PSCAD/EMTDC software. These cases are formed on the basic variation of different parameters of ISPST like fault inception angle, fault resistance loading condition and percentage of winding. The accuracy of the proposed technique is evaluated over a large number of cases and it is observed that the technique gives the results with high accuracy even in presence of noise in the signal.","PeriodicalId":332286,"journal":{"name":"2016 IEEE 7th Power India International Conference (PIICON)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Power India International Conference (PIICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERI.2016.8077332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes a technique for the detection of type of internal fault in an indirect symmetrical phase shift transformer (ISPST). An application of Pattern Recognition Network (PRN) is proposed as a core classifier to identify the type of internal fault. Four type of internal faults (turn-to-turn (TT), line-to-ground (LG), two line-to-ground (LLG), and three line-to-ground (LLLG)) have been classified. Numerous test cases of internal fault in an ISPST have been using PSCAD/EMTDC software. These cases are formed on the basic variation of different parameters of ISPST like fault inception angle, fault resistance loading condition and percentage of winding. The accuracy of the proposed technique is evaluated over a large number of cases and it is observed that the technique gives the results with high accuracy even in presence of noise in the signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PRN的间接对称移相变压器内部故障类型识别
本文介绍了一种间接对称移相变压器(ISPST)内部故障类型检测技术。提出了一种应用模式识别网络(PRN)作为核心分类器识别内部故障类型的方法。内部故障分为四种类型:匝对匝(TT)、线对地(LG)、两线对地(LLG)和三线对地(LLLG)。许多ISPST内部故障的测试用例都使用了PSCAD/EMTDC软件。这些案例是在ISPST的故障起始角、故障电阻加载条件、绕组占比等不同参数的基本变化基础上形成的。通过大量的实例对所提出的技术的精度进行了评估,并观察到该技术即使在信号中存在噪声的情况下也能给出高精度的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of power quality disturbances in the utility grid with solar energy using S-transform Full bridge level doubling network assisted multilevel DC link inverter Distribution system expansion planning incorporating distributed generation A solar PV system controlled by least sum of exponentials algorithm Photo-voltaic system for refrigeration plants in isolated areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1