A new injectable tissue engineered scaffold for regenerative medicine

H. Hosseinkhani, M. Hosseinkhani, H. Kobayashi
{"title":"A new injectable tissue engineered scaffold for regenerative medicine","authors":"H. Hosseinkhani, M. Hosseinkhani, H. Kobayashi","doi":"10.1109/MMB.2006.251477","DOIUrl":null,"url":null,"abstract":"The failure of the application of tissue engineering in clinical trials is questionable. Tissue-engineering scaffolds used in tissue regeneration have micron structures that fail to be analogous to native extracellular matrix (ECM) in terms of both chemical composition and physical structure as a suitable surface structure for cell attachment, proliferation, and differentiation. In this study we designed an artificial ECM in order to mimic the nano-structured topography created by ECM components of native tissue. Selective differentiation of cardiomyocytes cells by self assembly of peptide-amphiphile nanofibers was studied for in vivo cardiac infarction therapy","PeriodicalId":170356,"journal":{"name":"2006 International Conference on Microtechnologies in Medicine and Biology","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microtechnologies in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMB.2006.251477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The failure of the application of tissue engineering in clinical trials is questionable. Tissue-engineering scaffolds used in tissue regeneration have micron structures that fail to be analogous to native extracellular matrix (ECM) in terms of both chemical composition and physical structure as a suitable surface structure for cell attachment, proliferation, and differentiation. In this study we designed an artificial ECM in order to mimic the nano-structured topography created by ECM components of native tissue. Selective differentiation of cardiomyocytes cells by self assembly of peptide-amphiphile nanofibers was studied for in vivo cardiac infarction therapy
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于再生医学的新型可注射组织工程支架
组织工程在临床试验中的应用失败值得怀疑。用于组织再生的组织工程支架具有微米结构,在化学成分和物理结构方面都不能与天然细胞外基质(ECM)相似,不能作为细胞附着、增殖和分化的合适表面结构。在这项研究中,我们设计了一个人工ECM,以模拟由天然组织的ECM成分产生的纳米结构地形。研究了肽-两亲性纳米纤维自组装对心肌细胞选择性分化的治疗作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDF Not Yet Available In IEEE Xplore Two-Compartments Microbioreactor with Integrated Magnetic Stirrer Pump for Measurement of Transmembrane Transport of Caco-2 Cells 3D Microelectrodes for Coulometric Screening in Microfabricated Lab-on-a-Chip Devices A Silicon-Based Single-Cell Electroporation Microchip for Gene Transfer Adsorption-induced inactivation of heavy meromyosin on polymer surfaces imposes effective drag force on sliding actin filaments in vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1