Self-adaptation and global convergence: a counter-example

G. Rudolph
{"title":"Self-adaptation and global convergence: a counter-example","authors":"G. Rudolph","doi":"10.1109/CEC.1999.781994","DOIUrl":null,"url":null,"abstract":"The self-adaptation of the mutation distribution is a distinguishing feature of evolutionary algorithms that optimize over continuous variables. It is widely recognized that self-adaptation accelerates the search for optima and enhances the ability to locate optima accurately, but it is generally unclear whether these optima are global ones or not. Here, it is proven that the probability of convergence to the global optimum is less than one in general, even if the objective function is continuous.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.781994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The self-adaptation of the mutation distribution is a distinguishing feature of evolutionary algorithms that optimize over continuous variables. It is widely recognized that self-adaptation accelerates the search for optima and enhances the ability to locate optima accurately, but it is generally unclear whether these optima are global ones or not. Here, it is proven that the probability of convergence to the global optimum is less than one in general, even if the objective function is continuous.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自我适应与全球趋同:一个反例
突变分布的自适应是对连续变量进行优化的进化算法的一个显著特征。人们普遍认为,自适应加速了对最优点的搜索,提高了精确定位最优点的能力,但这些最优点是否为全局最优点,通常并不清楚。在这里,证明了即使目标函数是连续的,一般情况下收敛到全局最优的概率小于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a characteristic bimodal convergence-time/mutation-rate feature in evolutionary search Classifier systems evolving multi-agent system with distributed elitism A unified model of non-panmictic population structures in evolutionary algorithms Control of autonomous robots using fuzzy logic controllers tuned by genetic algorithms Oil reservoir production forecasting with uncertainty estimation using genetic algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1