{"title":"Design Of Electrochromic Hybrid Poly(3-Methylthiophene)/Wo3 Materials Via Electrochemical Route","authors":"Cigdem Dulgerbaki, A. Oksuz","doi":"10.1109/PLASMA.2017.8495982","DOIUrl":null,"url":null,"abstract":"Poly(3-methylthiophene) (PMeT)/tungsten oxide (WO3 hybrid films were fabricated by electropolymerization of MeT monomers onto WO3 coated indium tin oxide (ITO) glass slides, which were prepared by electrodeposition technique. Hybrid films synthesized electrochemically in 1butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4, 1butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6, 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (BMIMTFSI) and 1-butyl-1methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI) were applied to electrochromic device designs. Electrochromic characteristics of the devices such as optical modulation, coloration efficiency, switching time and stability were evaluated as the materials were switched between oxidized and reduced states. We fabricated electrochromic hybrid films consisting of WO3 and that exhibited a large, stable, and reversible electrochromic modulations with an applied electrical potential. Highest optical modulation was observed as 57.92% for PMeT/WO3/BMIMTFSI hybrid film. The hybrid films also show stable electrochromism even after 1000 scans. The electrochemical, structural and morphological analyses of the fabricated films were performed by using Cyclic Voltammetry (CV), X-rays Diffraction (XRD) and Scanning Electron Microscopy (SEM). CV results revealed that PMeT /WO3 hybrid films have much more electrochemical activity than those of WO3 and polymer film1. In hybrid films, crystalline structures decreased compared to WO3, and more amorphous arrangements have been introduced2. The morphological properties of the hybrids changed depending on characteristics of ionic liquids.","PeriodicalId":145705,"journal":{"name":"2017 IEEE International Conference on Plasma Science (ICOPS)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2017.8495982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Poly(3-methylthiophene) (PMeT)/tungsten oxide (WO3 hybrid films were fabricated by electropolymerization of MeT monomers onto WO3 coated indium tin oxide (ITO) glass slides, which were prepared by electrodeposition technique. Hybrid films synthesized electrochemically in 1butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4, 1butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6, 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (BMIMTFSI) and 1-butyl-1methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI) were applied to electrochromic device designs. Electrochromic characteristics of the devices such as optical modulation, coloration efficiency, switching time and stability were evaluated as the materials were switched between oxidized and reduced states. We fabricated electrochromic hybrid films consisting of WO3 and that exhibited a large, stable, and reversible electrochromic modulations with an applied electrical potential. Highest optical modulation was observed as 57.92% for PMeT/WO3/BMIMTFSI hybrid film. The hybrid films also show stable electrochromism even after 1000 scans. The electrochemical, structural and morphological analyses of the fabricated films were performed by using Cyclic Voltammetry (CV), X-rays Diffraction (XRD) and Scanning Electron Microscopy (SEM). CV results revealed that PMeT /WO3 hybrid films have much more electrochemical activity than those of WO3 and polymer film1. In hybrid films, crystalline structures decreased compared to WO3, and more amorphous arrangements have been introduced2. The morphological properties of the hybrids changed depending on characteristics of ionic liquids.