J. Senatore, F. Monies, W. Rubio, L. Tapie, Kwamiwi Mawussi
{"title":"Analysis of the twist of ruled surfaces: application to strip machining","authors":"J. Senatore, F. Monies, W. Rubio, L. Tapie, Kwamiwi Mawussi","doi":"10.1504/IJMR.2018.092780","DOIUrl":null,"url":null,"abstract":"Flank milling of ruled surfaces is commonly applied to obtain rotating machine parts as defined using ruled surfaces. To this purpose, a wide range of positioning strategies had been studied to reduce interference between the cutting tool and the surface. Indeed, modelled ruled surfaces are non-developable meaning that they cannot be machined without interference. In order to minimise such interference, the positioning strategies studied tend to become increasingly complex, involving software programming using a dedicated language. To simplify matters and apply developed methods using standard software applications, it is proposed here to reduce interference by breaking the machined surface down into a number of sub-surfaces. The aim with this decomposition is to reduce the twist on each portion. A study of the global twist is presented showing nonlinearity with the length of the rule so that cutting methods can be demonstrated. [Received 28 November 2016; Revised 18 April 2017; Accepted 26 June 2017]","PeriodicalId":154059,"journal":{"name":"Int. J. Manuf. Res.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Manuf. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMR.2018.092780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flank milling of ruled surfaces is commonly applied to obtain rotating machine parts as defined using ruled surfaces. To this purpose, a wide range of positioning strategies had been studied to reduce interference between the cutting tool and the surface. Indeed, modelled ruled surfaces are non-developable meaning that they cannot be machined without interference. In order to minimise such interference, the positioning strategies studied tend to become increasingly complex, involving software programming using a dedicated language. To simplify matters and apply developed methods using standard software applications, it is proposed here to reduce interference by breaking the machined surface down into a number of sub-surfaces. The aim with this decomposition is to reduce the twist on each portion. A study of the global twist is presented showing nonlinearity with the length of the rule so that cutting methods can be demonstrated. [Received 28 November 2016; Revised 18 April 2017; Accepted 26 June 2017]