Remarks on System Identification Using a Quaternion Recurrent Neural Network Trained by Backpropagation through Time

Kazuhiko Takahashi, Sora Shibata, M. Hashimoto
{"title":"Remarks on System Identification Using a Quaternion Recurrent Neural Network Trained by Backpropagation through Time","authors":"Kazuhiko Takahashi, Sora Shibata, M. Hashimoto","doi":"10.1109/anzcc53563.2021.9628201","DOIUrl":null,"url":null,"abstract":"This study investigates the learning capability of a quaternion recurrent neural network that is trained based on a backpropagation through time algorithm extended to quaternion numbers. Computational experiments to identify nonlinear systems, e.g. a three–dimensional chaotic system and discrete–time plant, were performed, and the simulation results confirmed the feasibility of using the quaternion recurrent neural network for a control system application.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/anzcc53563.2021.9628201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the learning capability of a quaternion recurrent neural network that is trained based on a backpropagation through time algorithm extended to quaternion numbers. Computational experiments to identify nonlinear systems, e.g. a three–dimensional chaotic system and discrete–time plant, were performed, and the simulation results confirmed the feasibility of using the quaternion recurrent neural network for a control system application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间反向传播训练的四元数递归神经网络的系统辨识
本文研究了四元数递归神经网络的学习能力,该网络是基于扩展到四元数的时间反向传播算法进行训练的。通过计算实验对三维混沌系统和离散时间对象等非线性系统进行了辨识,仿真结果证实了将四元数递归神经网络应用于控制系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring of Froth Flotation with Transfer Learning and Principal Component Models* Mitigating Tilt Anisoplanatism with the Slope Merging Method for Multi-Conjugate Adaptive Optics Systems Effect of increased number of COVID-19 tests using supervised machine learning models Social Shaping of Linear Quadratic Multi-Agent Systems Approximating Nonlinear Model Predictive Controllers using Support Vector Machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1