Multi-Class Imbalanced Fault Diagnosis Method Based on IMWMOTE and MFO-Bayes-LS-SVM

Yunwei Zhu, Jianan Wei, Haisong Huang
{"title":"Multi-Class Imbalanced Fault Diagnosis Method Based on IMWMOTE and MFO-Bayes-LS-SVM","authors":"Yunwei Zhu, Jianan Wei, Haisong Huang","doi":"10.1109/ICNISC54316.2021.00054","DOIUrl":null,"url":null,"abstract":"In actual industrial production, the historical data of fault diagnosis are often imbalanced. Therefore, this paper uses a fault diagnosis method based on the improved MWMOTE(Majority Weighted Minority Oversampling Technique) algorithm and LS-SVM (Least Squares Support Vector Machines) under the Moth Flame Optimization (MFO) -Bayesian framework. The IMWMOTE algorithm was used to over-sample to obtain the balanced data set. To verify the effectiveness of IMWMOTE algorithm and optimize the parameters of LS-SVM classifier, we used MFO-LS-SVM method to diagnose whether the fault occurred. Then, the Bayesian- LS-SVM method is used to diagnose the fault types. An example of bearing fault diagnosis shows that the proposed method has higher fault diagnosis recognition rate and algorithm robustness than the existing algorithms.","PeriodicalId":396802,"journal":{"name":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"331 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC54316.2021.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In actual industrial production, the historical data of fault diagnosis are often imbalanced. Therefore, this paper uses a fault diagnosis method based on the improved MWMOTE(Majority Weighted Minority Oversampling Technique) algorithm and LS-SVM (Least Squares Support Vector Machines) under the Moth Flame Optimization (MFO) -Bayesian framework. The IMWMOTE algorithm was used to over-sample to obtain the balanced data set. To verify the effectiveness of IMWMOTE algorithm and optimize the parameters of LS-SVM classifier, we used MFO-LS-SVM method to diagnose whether the fault occurred. Then, the Bayesian- LS-SVM method is used to diagnose the fault types. An example of bearing fault diagnosis shows that the proposed method has higher fault diagnosis recognition rate and algorithm robustness than the existing algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于IMWMOTE和MFO-Bayes-LS-SVM的多类不平衡故障诊断方法
在实际工业生产中,故障诊断的历史数据往往是不平衡的。因此,本文采用了一种基于改进的MWMOTE(多数加权少数过采样技术)算法和LS-SVM(最小二乘支持向量机)在蛾焰优化(MFO) -贝叶斯框架下的故障诊断方法。采用IMWMOTE算法进行过采样,得到平衡数据集。为了验证IMWMOTE算法的有效性,并优化LS-SVM分类器的参数,我们使用MFO-LS-SVM方法来诊断故障是否发生。然后,采用贝叶斯- LS-SVM方法进行故障类型诊断。轴承故障诊断实例表明,该方法比现有算法具有更高的故障诊断识别率和算法鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explore the Performance of Capsule Neural Network Learning Discrete Features Profiling Pumped Storage Power Station via Multi-Sequence Joint Regression Trajectory Tracking Technology for Crawler Rescue Robot Insight into the Inhibitory Activities of Diverse Ligands for Tyrosinase Using Molecular and Structure-based Features Design and Optimization of Ultrasonic Fatigue Specimen Based on ANSYS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1