Human daily activity behavioural clustering from Time Use Survey

A. Bellagarda, E. Patti, E. Macii, Lorenzo Bottaccioli
{"title":"Human daily activity behavioural clustering from Time Use Survey","authors":"A. Bellagarda, E. Patti, E. Macii, Lorenzo Bottaccioli","doi":"10.23919/AEITAUTOMOTIVE50086.2020.9307408","DOIUrl":null,"url":null,"abstract":"Identification of daily pattern behaviours of people from Time use Survey with the purpose of defining archetypes of persons is becoming a new rising research field. Identified patters are useful for developing more realistic models to simulate activities of citizens related to mobility and households energy consumption. These models are required to test and develop simulation scenarios of future smart grids and cities. In this work we apply the k-modes algorithm to clusterize the Italian TUS data-set. For the best of our knowledge this is the only study that applied unsupervised clusterization and classification of Italian TUS data and the only one that extended the analysis to mobility activities of the TUS data-sets. From experimental results we obtained different clusters for weekdays, saturdays and holidays, respectively.","PeriodicalId":104806,"journal":{"name":"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEITAUTOMOTIVE50086.2020.9307408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Identification of daily pattern behaviours of people from Time use Survey with the purpose of defining archetypes of persons is becoming a new rising research field. Identified patters are useful for developing more realistic models to simulate activities of citizens related to mobility and households energy consumption. These models are required to test and develop simulation scenarios of future smart grids and cities. In this work we apply the k-modes algorithm to clusterize the Italian TUS data-set. For the best of our knowledge this is the only study that applied unsupervised clusterization and classification of Italian TUS data and the only one that extended the analysis to mobility activities of the TUS data-sets. From experimental results we obtained different clusters for weekdays, saturdays and holidays, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自时间使用调查的人类日常活动行为聚类
从时间使用调查中识别人的日常模式行为,以确定人的原型是一个新兴的研究领域。确定的模式有助于开发更现实的模型,以模拟与流动性和家庭能源消耗有关的公民活动。这些模型需要测试和开发未来智能电网和城市的模拟场景。在这项工作中,我们应用k模式算法对意大利TUS数据集进行聚类。据我们所知,这是唯一一项对意大利TUS数据进行无监督聚类和分类的研究,也是唯一一项将分析扩展到TUS数据集的流动性活动的研究。从实验结果中,我们分别得到了工作日、周六和节假日的不同聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Silicon MOSFETs Evaluation in Auxiliary DC-DC Converters for HEV/EV Applications LiDAR - Stereo Camera Fusion for Accurate Depth Estimation Design and Modeling of an Interleaving Boost Converter with Quasi-Saturated Inductors for Electric Vehicles Review on Electric Vehicles Exterior Noise Generation and Evaluation The "first and euRopEAn siC eighT Inches pilOt liNe": a project, called REACTION, that will boost key SiC Technologies upgrading (developments) in Europe, unleashing Applications in the Automotive Power Electronics Sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1