Minh-Son Dao, M. Riegler, Duc-Tien Dang-Nguyen, C. Gurrin, Yuta Nakashima, M. Dong
{"title":"ICDAR'22: Intelligent Cross-Data Analysis and Retrieval","authors":"Minh-Son Dao, M. Riegler, Duc-Tien Dang-Nguyen, C. Gurrin, Yuta Nakashima, M. Dong","doi":"10.1145/3512527.3531441","DOIUrl":null,"url":null,"abstract":"We have witnessed the rise of cross-data against multimodal data problems recently. The cross-modal retrieval system uses a textual query to look for images; the air quality index can be predicted using lifelogging images; the congestion can be predicted using weather and tweets data; daily exercises and meals can help to predict the sleeping quality are some examples of this research direction. Although vast investigations focusing on multimodal data analytics have been developed, few cross-data (e.g., cross-modal data, cross-domain, cross-platform) research has been carried on. In order to promote intelligent cross-data analytics and retrieval research and to bring a smart, sustainable society to human beings, the specific article collection on \"Intelligent Cross-Data Analysis and Retrieval\" is introduced. This Research Topic welcomes those who come from diverse research domains and disciplines such as well-being, disaster prevention and mitigation, mobility, climate change, tourism, healthcare, and food computing","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We have witnessed the rise of cross-data against multimodal data problems recently. The cross-modal retrieval system uses a textual query to look for images; the air quality index can be predicted using lifelogging images; the congestion can be predicted using weather and tweets data; daily exercises and meals can help to predict the sleeping quality are some examples of this research direction. Although vast investigations focusing on multimodal data analytics have been developed, few cross-data (e.g., cross-modal data, cross-domain, cross-platform) research has been carried on. In order to promote intelligent cross-data analytics and retrieval research and to bring a smart, sustainable society to human beings, the specific article collection on "Intelligent Cross-Data Analysis and Retrieval" is introduced. This Research Topic welcomes those who come from diverse research domains and disciplines such as well-being, disaster prevention and mitigation, mobility, climate change, tourism, healthcare, and food computing