ICDAR'22: Intelligent Cross-Data Analysis and Retrieval

Minh-Son Dao, M. Riegler, Duc-Tien Dang-Nguyen, C. Gurrin, Yuta Nakashima, M. Dong
{"title":"ICDAR'22: Intelligent Cross-Data Analysis and Retrieval","authors":"Minh-Son Dao, M. Riegler, Duc-Tien Dang-Nguyen, C. Gurrin, Yuta Nakashima, M. Dong","doi":"10.1145/3512527.3531441","DOIUrl":null,"url":null,"abstract":"We have witnessed the rise of cross-data against multimodal data problems recently. The cross-modal retrieval system uses a textual query to look for images; the air quality index can be predicted using lifelogging images; the congestion can be predicted using weather and tweets data; daily exercises and meals can help to predict the sleeping quality are some examples of this research direction. Although vast investigations focusing on multimodal data analytics have been developed, few cross-data (e.g., cross-modal data, cross-domain, cross-platform) research has been carried on. In order to promote intelligent cross-data analytics and retrieval research and to bring a smart, sustainable society to human beings, the specific article collection on \"Intelligent Cross-Data Analysis and Retrieval\" is introduced. This Research Topic welcomes those who come from diverse research domains and disciplines such as well-being, disaster prevention and mitigation, mobility, climate change, tourism, healthcare, and food computing","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We have witnessed the rise of cross-data against multimodal data problems recently. The cross-modal retrieval system uses a textual query to look for images; the air quality index can be predicted using lifelogging images; the congestion can be predicted using weather and tweets data; daily exercises and meals can help to predict the sleeping quality are some examples of this research direction. Although vast investigations focusing on multimodal data analytics have been developed, few cross-data (e.g., cross-modal data, cross-domain, cross-platform) research has been carried on. In order to promote intelligent cross-data analytics and retrieval research and to bring a smart, sustainable society to human beings, the specific article collection on "Intelligent Cross-Data Analysis and Retrieval" is introduced. This Research Topic welcomes those who come from diverse research domains and disciplines such as well-being, disaster prevention and mitigation, mobility, climate change, tourism, healthcare, and food computing
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ICDAR'22:智能交叉数据分析与检索
最近,我们见证了跨数据对抗多模式数据问题的兴起。跨模态检索系统使用文本查询来查找图像;空气质量指数可以利用生活记录图像进行预测;拥堵可以通过天气和推特数据来预测;日常锻炼和饮食可以帮助预测睡眠质量是这一研究方向的一些例子。尽管对多模式数据分析进行了大量的研究,但很少进行跨数据(例如,跨模式数据,跨领域,跨平台)的研究。为了促进智能交叉数据分析与检索研究,为人类带来一个智能的、可持续发展的社会,本文介绍了“智能交叉数据分析与检索”的具体文集。本研究课题欢迎来自不同研究领域和学科的人,如福祉,防灾减灾,流动性,气候变化,旅游,医疗保健和食品计算
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1