{"title":"Precise Cache Timing Analysis via Symbolic Execution","authors":"D. Chu, J. Jaffar, Rasool Maghareh","doi":"10.1109/RTAS.2016.7461358","DOIUrl":null,"url":null,"abstract":"We present a framework for WCET analysis of programs with emphasis on cache micro-architecture. Such an analysis is challenging primarily because of the timing model of a dynamic nature, that is, the timing of a basic block is heavily dependent on the context in which it is executed. At its core, our algorithm is based on symbolic execution, and an analysis is obtained by locating the \"longest\" symbolic execution path. Clearly a challenge is the intractable number of paths in the symbolic execution tree. Traditionally this challenge is met by performing some form of abstraction in the path generation process but this leads to a loss of path-sensitivity and thus precision in the analysis. The key feature of our algorithm is the ability for reuse. This is critical for maintaining a high-level of path-sensitivity, which in turn produces significantly increased accuracy. In other words, reuse allows scalability in path-sensitive exploration. Finally, we present an experimental evaluation on well known benchmarks in order to show two things: that systematic path-sensitivity in fact brings significant accuracy gains, and that the algorithm still scales well.","PeriodicalId":338179,"journal":{"name":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2016.7461358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
We present a framework for WCET analysis of programs with emphasis on cache micro-architecture. Such an analysis is challenging primarily because of the timing model of a dynamic nature, that is, the timing of a basic block is heavily dependent on the context in which it is executed. At its core, our algorithm is based on symbolic execution, and an analysis is obtained by locating the "longest" symbolic execution path. Clearly a challenge is the intractable number of paths in the symbolic execution tree. Traditionally this challenge is met by performing some form of abstraction in the path generation process but this leads to a loss of path-sensitivity and thus precision in the analysis. The key feature of our algorithm is the ability for reuse. This is critical for maintaining a high-level of path-sensitivity, which in turn produces significantly increased accuracy. In other words, reuse allows scalability in path-sensitive exploration. Finally, we present an experimental evaluation on well known benchmarks in order to show two things: that systematic path-sensitivity in fact brings significant accuracy gains, and that the algorithm still scales well.