PolyU-CBS at the FinSim-2 Task: Combining Distributional, String-Based and Transformers-Based Features for Hypernymy Detection in the Financial Domain

Emmanuele Chersoni, Chu-Ren Huang
{"title":"PolyU-CBS at the FinSim-2 Task: Combining Distributional, String-Based and Transformers-Based Features for Hypernymy Detection in the Financial Domain","authors":"Emmanuele Chersoni, Chu-Ren Huang","doi":"10.1145/3442442.3451387","DOIUrl":null,"url":null,"abstract":"In this contribution, we describe the systems presented by the PolyU CBS Team at the second Shared Task on Learning Semantic Similarities for the Financial Domain (FinSim-2), where participating teams had to identify the right hypernyms for a list of target terms from the financial domain. For this task, we ran our classification experiments with several distributional, string-based, and Transformer features. Our results show that a simple logistic regression classifier, when trained on a combination of word embeddings, semantic and string similarity metrics and BERT-derived probabilities, achieves a strong performance (above 90%) in financial hypernymy detection.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"97 7-8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3451387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this contribution, we describe the systems presented by the PolyU CBS Team at the second Shared Task on Learning Semantic Similarities for the Financial Domain (FinSim-2), where participating teams had to identify the right hypernyms for a list of target terms from the financial domain. For this task, we ran our classification experiments with several distributional, string-based, and Transformer features. Our results show that a simple logistic regression classifier, when trained on a combination of word embeddings, semantic and string similarity metrics and BERT-derived probabilities, achieves a strong performance (above 90%) in financial hypernymy detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PolyU-CBS在FinSim-2任务中的应用:结合分布式、基于字符串和基于变换的特征在金融领域进行超词检测
在这篇文章中,我们描述了理大哥伦比亚广播公司团队在第二次金融领域语义相似度学习共享任务(FinSim-2)上展示的系统,参与的团队必须为金融领域的目标术语列表识别正确的首字母缩略词。对于这个任务,我们用几个分布式的、基于字符串的和Transformer的特征运行了分类实验。我们的研究结果表明,一个简单的逻辑回归分类器,当在词嵌入、语义和字符串相似度量以及bert衍生概率的组合上进行训练时,在金融超长词检测方面取得了很强的性能(超过90%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do I Trust this Stranger? Generalized Trust and the Governance of Online Communities Explainable Demand Forecasting: A Data Mining Goldmine Tracing the Factoids: the Anatomy of Information Re-organization in Wikipedia Articles AI Principles in Identifying Toxicity in Online Conversation: Keynote at the Third Workshop on Fairness, Accountability, Transparency, Ethics and Society on the Web Fairness beyond “equal”: The Diversity Searcher as a Tool to Detect and Enhance the Representation of Socio-political Actors in News Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1