Automated algorithm composition of unsupervised image clustering algorithms

Mia Gerber, N. Pillay
{"title":"Automated algorithm composition of unsupervised image clustering algorithms","authors":"Mia Gerber, N. Pillay","doi":"10.1145/3583133.3590555","DOIUrl":null,"url":null,"abstract":"Unsupervised learning algorithms are popular as they do not require annotated data. However as per the no-free lunch theorem, the best algorithm to use is not the same for all datasets. This study is the first to automate the composition of an unsupervised image clustering algorithm. This work uses two different techniques to perform automated algorithm composition. The first technique is a genetic algorithm (GA) and the second is a genetic algorithm hyperheuristic (GAHH). A comparison of the two techniques shows that the GA outperforms the GAHH. The GA designs unsupervised clustering algorithms that result in state of the art performance for the Oral lesion, Celebrity faces and COVID-19 datasets.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised learning algorithms are popular as they do not require annotated data. However as per the no-free lunch theorem, the best algorithm to use is not the same for all datasets. This study is the first to automate the composition of an unsupervised image clustering algorithm. This work uses two different techniques to perform automated algorithm composition. The first technique is a genetic algorithm (GA) and the second is a genetic algorithm hyperheuristic (GAHH). A comparison of the two techniques shows that the GA outperforms the GAHH. The GA designs unsupervised clustering algorithms that result in state of the art performance for the Oral lesion, Celebrity faces and COVID-19 datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动算法组成的无监督图像聚类算法
无监督学习算法很受欢迎,因为它们不需要注释数据。然而,根据没有免费的午餐定理,对于所有数据集使用的最佳算法并不相同。本研究首次实现了自动合成无监督图像聚类算法。这项工作使用两种不同的技术来执行自动算法组合。第一种技术是遗传算法(GA),第二种是遗传算法超启发式(GAHH)。两种技术的比较表明,遗传算法优于遗传算法。该遗传算法设计了无监督聚类算法,可为口腔病变、名人面孔和COVID-19数据集提供最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Q-learning Assisted Ant Colony Optimization for Vehicle Routing Problems with Time Windows Iterative Structure-Based Genetic Programming for Neural Architecture Search Bayesian Optimization For Choice Data Exploring Adaptive Components of SOMA Evaluation of the impact of various modifications to CMA-ES that facilitate its theoretical analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1