R. Carboni, S. Ambrogio, Wei Chen, M. Siddik, J. Harms, Andy Lyle, Witold Kula, Gurtej S. Sandhu, Daniele Ielmini
{"title":"Understanding cycling endurance in perpendicular spin-transfer torque (p-STT) magnetic memory","authors":"R. Carboni, S. Ambrogio, Wei Chen, M. Siddik, J. Harms, Andy Lyle, Witold Kula, Gurtej S. Sandhu, Daniele Ielmini","doi":"10.1109/IEDM.2016.7838468","DOIUrl":null,"url":null,"abstract":"Perpendicular spin-transfer torque (p-STT) memory is attracting an increasing interest as storage class memory (SCM) or static/dynamic RAM replacement. In these applications, high speed and extended endurance are essential and sometimes conflicting requirements. This work addresses cycling endurance of p-STT devices by pulsed experiments and modeling of the dielectric breakdown. We present a new endurance model able to predict the STT endurance as a function of applied voltage, pulse width, pulse polarity and delay time. The trade-off between write time and endurance for RAM replacement is finally addressed.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Perpendicular spin-transfer torque (p-STT) memory is attracting an increasing interest as storage class memory (SCM) or static/dynamic RAM replacement. In these applications, high speed and extended endurance are essential and sometimes conflicting requirements. This work addresses cycling endurance of p-STT devices by pulsed experiments and modeling of the dielectric breakdown. We present a new endurance model able to predict the STT endurance as a function of applied voltage, pulse width, pulse polarity and delay time. The trade-off between write time and endurance for RAM replacement is finally addressed.