Numerical Study of Thermal Modeling of Resistance Spot Welding Utilizing Coupled Thermal-Electrical-Mechanical Analysis

Lijun Xu, J. Khan, Y. Chao, K. Broach
{"title":"Numerical Study of Thermal Modeling of Resistance Spot Welding Utilizing Coupled Thermal-Electrical-Mechanical Analysis","authors":"Lijun Xu, J. Khan, Y. Chao, K. Broach","doi":"10.1115/imece1999-1097","DOIUrl":null,"url":null,"abstract":"\n This paper successfully proposes a novel model to predict nugget development during resistance spot welding (RSW) of binary Al-alloys. The model employs a coupled thermal-electrical-mechanical analysis, and also accounts for phase change and convective transport in weld pool. Faying surface contact area and its pressure distribution are simulated from coupled thermal-mechanical model using a finite element method. Temperature dependent thermal, electrical and mechanical properties are used. The proposed model can successfully calculate most of the RSW response in term of nugget diameter and thickness, the extent of heat affected zone, etc. The calculated nugget shape based on the thermal model agrees well with the experimental data. Convection effect due to the interactions between phases in the porous mushy zone and the buoyancy force arising from the temperature difference is determined to be not significant for the weld-nugget formation. The proposed model can be used to optimize RSW process parameters for industrial welding.","PeriodicalId":306962,"journal":{"name":"Heat Transfer: Volume 3","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-1097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper successfully proposes a novel model to predict nugget development during resistance spot welding (RSW) of binary Al-alloys. The model employs a coupled thermal-electrical-mechanical analysis, and also accounts for phase change and convective transport in weld pool. Faying surface contact area and its pressure distribution are simulated from coupled thermal-mechanical model using a finite element method. Temperature dependent thermal, electrical and mechanical properties are used. The proposed model can successfully calculate most of the RSW response in term of nugget diameter and thickness, the extent of heat affected zone, etc. The calculated nugget shape based on the thermal model agrees well with the experimental data. Convection effect due to the interactions between phases in the porous mushy zone and the buoyancy force arising from the temperature difference is determined to be not significant for the weld-nugget formation. The proposed model can be used to optimize RSW process parameters for industrial welding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于热-电-力耦合分析的电阻点焊热建模数值研究
本文成功地提出了一种预测二元铝合金电阻点焊过程中熔核发展的新模型。该模型采用热-电-力耦合分析,并考虑了熔池的相变和对流输运。采用有限元法,建立热-力耦合模型,对接触面面积和压力分布进行了数值模拟。使用温度相关的热、电和机械性能。该模型能较好地计算出基于熔核直径、厚度、热影响区范围等参数的大部分RSW响应。基于热模型计算的熔核形状与实验数据吻合较好。确定了多孔糊状区相间相互作用产生的对流效应和温差产生的浮力对焊核形成的影响不显著。该模型可用于工业焊接RSW工艺参数的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer Characteristics of Single Droplet Cooling Using a Microscale Heater Array Thermal Modeling for the Consolidation Process of Thermoplastic Composite Filament Winding Parametric Study of the Ablation Characteristics of Absorbing Dielectrics by Short Pulse Laser A Numerical Analysis of Gas Turbine Disks Incorporating Rotating Heat Pipes Neural Network Modeling of Molecular Beam Epitaxy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1