cLP: Linear programming with biological constraints and its application in classification problems

Manli Zhou, Youxi Luo, Guoqin Mai, F. Zhou
{"title":"cLP: Linear programming with biological constraints and its application in classification problems","authors":"Manli Zhou, Youxi Luo, Guoqin Mai, F. Zhou","doi":"10.1109/ISB.2014.6990747","DOIUrl":null,"url":null,"abstract":"Feature selection represents a major challenge in the biomedical data mining problem, and numerous algorithms have been proposed to select an optimal subset of features with the best classification performance. However, the existing algorithms do not take into account the vast amount of biomedical knowledge from the literature and experienced researchers. This work proposes a novel feature selection algorithm, cLP, with the optimized binary classification accuracy. The proposed algorithm incorporates the biomedical knowledge as constraints in the linear programming based optimization model. The experimental data shows that cLP outperforms the other feature selection algorithms, and its constrained version performs similarly well with the unconstrained version. Although theoretically constraints will reduce the classification model performance, our data shows that the constrained cLP sometimes even outperforms the unconstrained version. This suggests that besides the benefit of including biomedical knowledge in the model, the constrained cLP may also achieve better classification performance.","PeriodicalId":249103,"journal":{"name":"2014 8th International Conference on Systems Biology (ISB)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2014.6990747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature selection represents a major challenge in the biomedical data mining problem, and numerous algorithms have been proposed to select an optimal subset of features with the best classification performance. However, the existing algorithms do not take into account the vast amount of biomedical knowledge from the literature and experienced researchers. This work proposes a novel feature selection algorithm, cLP, with the optimized binary classification accuracy. The proposed algorithm incorporates the biomedical knowledge as constraints in the linear programming based optimization model. The experimental data shows that cLP outperforms the other feature selection algorithms, and its constrained version performs similarly well with the unconstrained version. Although theoretically constraints will reduce the classification model performance, our data shows that the constrained cLP sometimes even outperforms the unconstrained version. This suggests that besides the benefit of including biomedical knowledge in the model, the constrained cLP may also achieve better classification performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有生物约束的线性规划及其在分类问题中的应用
特征选择是生物医学数据挖掘问题中的一个主要挑战,已经提出了许多算法来选择具有最佳分类性能的最优特征子集。然而,现有的算法没有考虑到来自文献和经验丰富的研究人员的大量生物医学知识。本文提出了一种新的特征选择算法cLP,该算法具有优化的二值分类精度。该算法将生物医学知识作为约束纳入到基于线性规划的优化模型中。实验数据表明,cLP优于其他特征选择算法,其约束版本与无约束版本的表现相似。虽然理论上约束会降低分类模型的性能,但我们的数据表明,约束的cLP有时甚至优于未约束的cLP。这表明,除了将生物医学知识纳入模型的好处之外,约束的cLP还可以获得更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological characterization of housekeeping genes in human protein-protein interaction network The correlation and regression analysis on aerosol optical depth, ice cover and cloud cover in Greenland Sea A semi-tensor product approach for Probabilistic Boolean Networks VaccineWatch: a monitoring system of vaccine messages from social media data Evolution analysis for HA gene of human influenza A H3N2 virus (1990 – 2013)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1