{"title":"The Non-Linear Derivative (NLD) model for the in-medium hyperons & antihyperons dynamics","authors":"Arsenia Chorozidou, T. Gaitanos","doi":"10.12681/hnps.3574","DOIUrl":null,"url":null,"abstract":"The in-medium properties of hyperons and antihyperons are studied with the Non-Linear Derivative (NLD) model and focus is made on the momentum dependence of strangeness optical potentials[1]. The NLD model is based on the Relativistic Mean Field (RMF) approximation to Relativistic Hadrodynamics (RHD) approach of nuclear systems, but it incorporates an explicit momentum dependence of mean-fields. The extension of the NLD model to the baryon and antibaryon octet is based on SU(6) and G-parity arguments. It is demonstrated that with a proper choice of momentum cut-offs, the Λ and Σ optical potentials are consistent with recent studies of the chiral effective field theory and Ξ optical potentials are consistent with Lattice-QCD calculations, over a wide momentum region. We also present NLD predictions for the in-medium momentum dependence of antiΛ, antiΣ and antiΞ hyperons. This work is important for future experimental studies, like CBM, PANDA at FAIR and is relevant to nuclear astrophysics as well.","PeriodicalId":262803,"journal":{"name":"HNPS Advances in Nuclear Physics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HNPS Advances in Nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12681/hnps.3574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The in-medium properties of hyperons and antihyperons are studied with the Non-Linear Derivative (NLD) model and focus is made on the momentum dependence of strangeness optical potentials[1]. The NLD model is based on the Relativistic Mean Field (RMF) approximation to Relativistic Hadrodynamics (RHD) approach of nuclear systems, but it incorporates an explicit momentum dependence of mean-fields. The extension of the NLD model to the baryon and antibaryon octet is based on SU(6) and G-parity arguments. It is demonstrated that with a proper choice of momentum cut-offs, the Λ and Σ optical potentials are consistent with recent studies of the chiral effective field theory and Ξ optical potentials are consistent with Lattice-QCD calculations, over a wide momentum region. We also present NLD predictions for the in-medium momentum dependence of antiΛ, antiΣ and antiΞ hyperons. This work is important for future experimental studies, like CBM, PANDA at FAIR and is relevant to nuclear astrophysics as well.