Data Farming on Heterogeneous Clouds

Dariusz Król, R. Słota, J. Kitowski, L. Dutka, Jakub Liput
{"title":"Data Farming on Heterogeneous Clouds","authors":"Dariusz Król, R. Słota, J. Kitowski, L. Dutka, Jakub Liput","doi":"10.1109/CLOUD.2014.120","DOIUrl":null,"url":null,"abstract":"Using multiple Clouds as a single environment to conduct simulation-based virtual experiments at a large-scale is a challenging problem. This paper describes how this can be achieved with the Scalarm platform in the context of data farming. In particular, a use case with a private Cloud combined with public, commercial Clouds is studied. We discuss the current architecture and implementation of Scalarm in terms of supporting different infrastructures, and propose how it can be extended in order to attain a unification of different Clouds usage. We discuss different aspects of the Cloud usage unification including: scheduling virtual machines, authentication, and virtual machine state monitoring. An experimental evaluation of the presented solution is conducted with a genetic algorithm solving the well-known Travel Salesman Problem. The evaluation uses three different resource configurations: using only public Cloud, using only private Cloud, and using both public and private Clouds.","PeriodicalId":288542,"journal":{"name":"2014 IEEE 7th International Conference on Cloud Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2014.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Using multiple Clouds as a single environment to conduct simulation-based virtual experiments at a large-scale is a challenging problem. This paper describes how this can be achieved with the Scalarm platform in the context of data farming. In particular, a use case with a private Cloud combined with public, commercial Clouds is studied. We discuss the current architecture and implementation of Scalarm in terms of supporting different infrastructures, and propose how it can be extended in order to attain a unification of different Clouds usage. We discuss different aspects of the Cloud usage unification including: scheduling virtual machines, authentication, and virtual machine state monitoring. An experimental evaluation of the presented solution is conducted with a genetic algorithm solving the well-known Travel Salesman Problem. The evaluation uses three different resource configurations: using only public Cloud, using only private Cloud, and using both public and private Clouds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构云上的数据耕种
使用多个云作为单一环境进行大规模的基于仿真的虚拟实验是一个具有挑战性的问题。本文描述了如何在数据农业的背景下使用Scalarm平台来实现这一点。特别地,研究了私有云与公共商业云相结合的用例。我们从支持不同基础设施的角度讨论了Scalarm的当前架构和实现,并提出了如何扩展它以实现不同云使用的统一。我们讨论了云使用统一的不同方面,包括:调度虚拟机、身份验证和虚拟机状态监控。用遗传算法求解著名的旅行推销员问题,对该方法进行了实验验证。评估使用三种不同的资源配置:仅使用公共云、仅使用私有云以及同时使用公共云和私有云。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User-Friendly Visualization of Cloud Quality Energy and Performance-Aware Task Scheduling in a Mobile Cloud Computing Environment MediaPaaS: A Cloud-Based Media Processing Platform for Elastic Live Broadcasting AppCloak: Rapid Migration of Legacy Applications into Cloud Introducing SSDs to the Hadoop MapReduce Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1