Functional and smart materials by electrospinning for advanced applications

M. Raisch, D. Genovese, G. Fornaia, N. Zaccheroni, Simon B. Schmidt, M. L. Focarete, M. Sommer, C. Gualandi
{"title":"Functional and smart materials by electrospinning for advanced applications","authors":"M. Raisch, D. Genovese, G. Fornaia, N. Zaccheroni, Simon B. Schmidt, M. L. Focarete, M. Sommer, C. Gualandi","doi":"10.1063/1.5140289","DOIUrl":null,"url":null,"abstract":"The processing of advanced and functional polymers with electrospinning brings enormous potentialities to either improve or extend their properties. A representative example is the field of mechanochromic materials, potentially exploitable for imaging mechanical damages and stress/strain distribution. An effective stress-sensing material must respond to low deformation with a detectable color change that should be quickly reversible upon force unloading. In the present study we processed a spiropyran main chain polymer by electrospinning and fibers with a proper weaving were included in a PDMS elastomeric matrix to produce composite materials. Measurements of fiber birefringence demonstrated that, after electrospinning, polymer chains were successfully vitrified in a highly oriented conformation. Stress strain tests, coupled with a real-time detection of color, showed that fibers displayed a clear color change after only 5% of deformation. When these highly sensitive mechanochromic nanofibers were incorporated in a PDMS matrix, either anisotropic or isotropic mechanochromic behavior was achieved, depending on fiber alignment. The unique mechanochromic properties of the proposed composites, i.e. reversibility, sensitivity and directionality, derive by a smart combination of chemical synthesis, processing and composite design, respectively, and make them ideal to act as real-time stress/strain-sensing materials.The processing of advanced and functional polymers with electrospinning brings enormous potentialities to either improve or extend their properties. A representative example is the field of mechanochromic materials, potentially exploitable for imaging mechanical damages and stress/strain distribution. An effective stress-sensing material must respond to low deformation with a detectable color change that should be quickly reversible upon force unloading. In the present study we processed a spiropyran main chain polymer by electrospinning and fibers with a proper weaving were included in a PDMS elastomeric matrix to produce composite materials. Measurements of fiber birefringence demonstrated that, after electrospinning, polymer chains were successfully vitrified in a highly oriented conformation. Stress strain tests, coupled with a real-time detection of color, showed that fibers displayed a clear color change after only 5% of deformation. When these highly sensitive mechanochromic nanofibers were incorpo...","PeriodicalId":130539,"journal":{"name":"THE 9TH INTERNATIONAL CONFERENCE ON STRUCTURAL ANALYSIS OF ADVANCED MATERIALS - ICSAAM 2019","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE 9TH INTERNATIONAL CONFERENCE ON STRUCTURAL ANALYSIS OF ADVANCED MATERIALS - ICSAAM 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5140289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The processing of advanced and functional polymers with electrospinning brings enormous potentialities to either improve or extend their properties. A representative example is the field of mechanochromic materials, potentially exploitable for imaging mechanical damages and stress/strain distribution. An effective stress-sensing material must respond to low deformation with a detectable color change that should be quickly reversible upon force unloading. In the present study we processed a spiropyran main chain polymer by electrospinning and fibers with a proper weaving were included in a PDMS elastomeric matrix to produce composite materials. Measurements of fiber birefringence demonstrated that, after electrospinning, polymer chains were successfully vitrified in a highly oriented conformation. Stress strain tests, coupled with a real-time detection of color, showed that fibers displayed a clear color change after only 5% of deformation. When these highly sensitive mechanochromic nanofibers were incorporated in a PDMS matrix, either anisotropic or isotropic mechanochromic behavior was achieved, depending on fiber alignment. The unique mechanochromic properties of the proposed composites, i.e. reversibility, sensitivity and directionality, derive by a smart combination of chemical synthesis, processing and composite design, respectively, and make them ideal to act as real-time stress/strain-sensing materials.The processing of advanced and functional polymers with electrospinning brings enormous potentialities to either improve or extend their properties. A representative example is the field of mechanochromic materials, potentially exploitable for imaging mechanical damages and stress/strain distribution. An effective stress-sensing material must respond to low deformation with a detectable color change that should be quickly reversible upon force unloading. In the present study we processed a spiropyran main chain polymer by electrospinning and fibers with a proper weaving were included in a PDMS elastomeric matrix to produce composite materials. Measurements of fiber birefringence demonstrated that, after electrospinning, polymer chains were successfully vitrified in a highly oriented conformation. Stress strain tests, coupled with a real-time detection of color, showed that fibers displayed a clear color change after only 5% of deformation. When these highly sensitive mechanochromic nanofibers were incorpo...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能和智能材料的静电纺丝先进应用
用静电纺丝法加工先进的功能性聚合物,为改善或扩展其性能带来了巨大的潜力。一个典型的例子是机械致色材料领域,潜在地用于成像机械损伤和应力/应变分布。一种有效的应力敏感材料必须对低变形做出反应,并具有可检测的颜色变化,并且在力卸载后应迅速可逆。本研究采用静电纺丝法对螺吡喃主链聚合物进行加工,并在PDMS弹性基体中加入适当织造的纤维制备复合材料。纤维双折射的测量表明,在静电纺丝后,聚合物链被成功地玻璃化成高度定向的构象。应力应变测试,再加上对颜色的实时检测,表明纤维仅在变形5%后就显示出明显的颜色变化。当这些高灵敏度的机械变色纳米纤维掺入到PDMS基体中时,根据纤维的排列方式,可以实现各向异性或各向同性的机械变色行为。所提出的复合材料独特的机械变色性能,即可逆性、灵敏度和方向性,分别由化学合成、加工和复合材料设计的智能组合而成,使其成为实时应力/应变传感材料的理想选择。用静电纺丝法加工先进的功能性聚合物,为改善或扩展其性能带来了巨大的潜力。一个典型的例子是机械致色材料领域,潜在地用于成像机械损伤和应力/应变分布。一种有效的应力敏感材料必须对低变形做出反应,并具有可检测的颜色变化,并且在力卸载后应迅速可逆。本研究采用静电纺丝法对螺吡喃主链聚合物进行加工,并在PDMS弹性基体中加入适当织造的纤维制备复合材料。纤维双折射的测量表明,在静电纺丝后,聚合物链被成功地玻璃化成高度定向的构象。应力应变测试,再加上对颜色的实时检测,表明纤维仅在变形5%后就显示出明显的颜色变化。当这些高度敏感的机械变色纳米纤维掺入…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
C8 microcrystals synthesized by anthracene carbonization Improving durability of titanium for biomedical use by composite ceramic coatings The mechanical behavior of dove tail profiled steel concrete composite shear walls under axial compression Preliminary approach to the study of flexural fatigue behavior of low Tg carbon/epoxy laminates Antiproliferative activity of the CGA-containing SiO2/PEG hybrids synthesized by sol-gel method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1