Neural Text Style Transfer via Denoising and Reranking

Joseph Lee, Ziang Xie, Cindy Wang, M. Drach, Dan Jurafsky, A. Ng
{"title":"Neural Text Style Transfer via Denoising and Reranking","authors":"Joseph Lee, Ziang Xie, Cindy Wang, M. Drach, Dan Jurafsky, A. Ng","doi":"10.18653/v1/W19-2309","DOIUrl":null,"url":null,"abstract":"We introduce a simple method for text style transfer that frames style transfer as denoising: we synthesize a noisy corpus and treat the source style as a noisy version of the target style. To control for aspects such as preserving meaning while modifying style, we propose a reranking approach in the data synthesis phase. We evaluate our method on three novel style transfer tasks: transferring between British and American varieties, text genres (formal vs. casual), and lyrics from different musical genres. By measuring style transfer quality, meaning preservation, and the fluency of generated outputs, we demonstrate that our method is able both to produce high-quality output while maintaining the flexibility to suggest syntactically rich stylistic edits.","PeriodicalId":223584,"journal":{"name":"Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation","volume":"318 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-2309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We introduce a simple method for text style transfer that frames style transfer as denoising: we synthesize a noisy corpus and treat the source style as a noisy version of the target style. To control for aspects such as preserving meaning while modifying style, we propose a reranking approach in the data synthesis phase. We evaluate our method on three novel style transfer tasks: transferring between British and American varieties, text genres (formal vs. casual), and lyrics from different musical genres. By measuring style transfer quality, meaning preservation, and the fluency of generated outputs, we demonstrate that our method is able both to produce high-quality output while maintaining the flexibility to suggest syntactically rich stylistic edits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于去噪和重排序的神经文本风格迁移
我们介绍了一种简单的文本风格转移方法,将风格转移框架为去噪:我们合成一个嘈杂的语料库,并将源风格视为目标风格的嘈杂版本。为了控制在修改样式的同时保留意义等方面,我们提出了一种在数据合成阶段重新排序的方法。我们在三个新颖的风格迁移任务中评估了我们的方法:在英美变体之间的迁移,文本类型(正式与休闲)以及来自不同音乐类型的歌词。通过测量风格转移质量、意义保存和生成输出的流畅性,我们证明了我们的方法能够产生高质量的输出,同时保持灵活性,以建议语法丰富的风格编辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paraphrase Generation for Semi-Supervised Learning in NLU How to Compare Summarizers without Target Length? Pitfalls, Solutions and Re-Examination of the Neural Summarization Literature Neural Text Simplification in Low-Resource Conditions Using Weak Supervision Neural Text Style Transfer via Denoising and Reranking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1