Two-Dimensional Random Subspace Analysis for face recognition

P. Sanguansat, W. Asdornwised, S. Marukatat, S. Jitapunkul
{"title":"Two-Dimensional Random Subspace Analysis for face recognition","authors":"P. Sanguansat, W. Asdornwised, S. Marukatat, S. Jitapunkul","doi":"10.1109/ISCIT.2007.4392094","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a novel technique for face recognition using Two-Dimensional Random Subspace Analysis (2DRSA), based on the Two-Dimensional Principal Component Analysis (2DPCA) technique and Random Subspace Method (RSM). In conventional 2DPCA, the image covariance matrix is directly calculated via 2D images in matrix form, by concept of the covariance of a random variable. However, 2DPCA reduces the dimension of the original image matrix in only one directions, normally in the row direction. Thus, it needs many more coefficients for image representation than PCA. For solving this problem, many methods were proposed by considering both the row and column directions. We develop another technique to reduce the dimension of 2DPCA feature matrix in column direction by using of randomization in selecting the rows of feature matrix. And the ensemble classification method is used to classify these feature subspaces. Experimental results on Yale, ORL and AR face databases show the improvement of our proposed techniques over the conventional 2DPCA.","PeriodicalId":331439,"journal":{"name":"2007 International Symposium on Communications and Information Technologies","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Communications and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2007.4392094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we proposed a novel technique for face recognition using Two-Dimensional Random Subspace Analysis (2DRSA), based on the Two-Dimensional Principal Component Analysis (2DPCA) technique and Random Subspace Method (RSM). In conventional 2DPCA, the image covariance matrix is directly calculated via 2D images in matrix form, by concept of the covariance of a random variable. However, 2DPCA reduces the dimension of the original image matrix in only one directions, normally in the row direction. Thus, it needs many more coefficients for image representation than PCA. For solving this problem, many methods were proposed by considering both the row and column directions. We develop another technique to reduce the dimension of 2DPCA feature matrix in column direction by using of randomization in selecting the rows of feature matrix. And the ensemble classification method is used to classify these feature subspaces. Experimental results on Yale, ORL and AR face databases show the improvement of our proposed techniques over the conventional 2DPCA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸识别的二维随机子空间分析
本文基于二维主成分分析(2DPCA)技术和随机子空间方法(RSM),提出了一种基于二维随机子空间分析(2DRSA)的人脸识别新技术。在传统的2DPCA中,通过随机变量协方差的概念,直接通过二维图像以矩阵形式计算图像协方差矩阵。然而,2DPCA只在一个方向上降低原始图像矩阵的维数,通常是在行方向。因此,它需要比PCA更多的系数来表示图像。为了解决这个问题,提出了许多同时考虑行方向和列方向的方法。利用随机化方法选择特征矩阵的行,提出了一种在列方向上降低2DPCA特征矩阵维数的方法。并采用集成分类方法对这些特征子空间进行分类。在耶鲁、ORL和AR人脸数据库上的实验结果表明,我们提出的方法比传统的2DPCA方法有了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved quantization scheme for lattice-reduction aided MIMO detection PAPR reduction in the OFDM system employing Tone Reservation based on FFT/IFFT Implementation and analysis of configurable Real Time Address Trace Compressor for embedded microprocessors Measured improvement of indoor coverage for fixed wireless loops with multiple antenna receivers Real-time wideband MIMO demonstrator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1