Nonlinear multivariate modelling of wetland dynamics

Angesh Anupam
{"title":"Nonlinear multivariate modelling of wetland dynamics","authors":"Angesh Anupam","doi":"10.1145/3573834.3574500","DOIUrl":null,"url":null,"abstract":"Wetlands are very complex yet pivotal ecosystems on Earth. They serve as habitats for various flora and fauna. Alongside, wetlands are crucial for biogeochemical exchange between the Earth’s surface and its atmosphere. A large proportion of organic carbon is sequestered in wetlands and plays a substantial role in the carbon cycle. The planning and management of wetlands depend a lot upon a reliable wetland model. The underlying complex dynamics of wetlands hinder the modelling of wetland extent. This study for the first time considers multivariate nonlinear dynamical system modelling using Nonlinear Autoregressive with Exogenous Inputs (NARX) model class. The data consists of weather variables and wetland fractions for two wetland sites falling under Asia and Africa. The model is simulated using fresh testing data and can predict wetland extent satisfactorily for both sample sites. The accuracy of the models is quantified using Root Mean square Error (RMSE) and Mean Absolute Error (MAE). A transparent NARX structure reveals the dynamical elements for the potential planning and management of wetlands.","PeriodicalId":345434,"journal":{"name":"Proceedings of the 4th International Conference on Advanced Information Science and System","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573834.3574500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wetlands are very complex yet pivotal ecosystems on Earth. They serve as habitats for various flora and fauna. Alongside, wetlands are crucial for biogeochemical exchange between the Earth’s surface and its atmosphere. A large proportion of organic carbon is sequestered in wetlands and plays a substantial role in the carbon cycle. The planning and management of wetlands depend a lot upon a reliable wetland model. The underlying complex dynamics of wetlands hinder the modelling of wetland extent. This study for the first time considers multivariate nonlinear dynamical system modelling using Nonlinear Autoregressive with Exogenous Inputs (NARX) model class. The data consists of weather variables and wetland fractions for two wetland sites falling under Asia and Africa. The model is simulated using fresh testing data and can predict wetland extent satisfactorily for both sample sites. The accuracy of the models is quantified using Root Mean square Error (RMSE) and Mean Absolute Error (MAE). A transparent NARX structure reveals the dynamical elements for the potential planning and management of wetlands.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
湿地动态的非线性多元模型
湿地是地球上非常复杂但又至关重要的生态系统。它们是各种动植物的栖息地。此外,湿地对地球表面和大气之间的生物地球化学交换至关重要。很大一部分有机碳被封存在湿地中,在碳循环中起着重要作用。湿地的规划和管理在很大程度上取决于一个可靠的湿地模型。湿地潜在的复杂动态阻碍了湿地范围的模拟。本研究首次采用非线性自回归外生输入(NARX)模型类对多变量非线性动力系统进行建模。数据包括亚洲和非洲两个湿地的天气变量和湿地分数。该模型使用最新的测试数据进行了模拟,可以令人满意地预测两个样点的湿地范围。采用均方根误差(RMSE)和平均绝对误差(MAE)对模型的精度进行量化。透明的NARX结构揭示了湿地潜在规划和管理的动态因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-view clustering study based on subspace Soil moisture prediction model based on LSTM and Elman neural network Rapid face detection in complex environments based on the improved RetinaFace Research on IOT online monitoring system based on efficient utilization pathway of mine water A Network Traffic Classification Model Based On XGBOOST_RFECV Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1