Fuzzy Logic Controller based pitch control of aircraft tuned with Bees Algorithm

R. Zaeri, A. Ghanbarzadeh, B. Attaran, Z. Zaeri
{"title":"Fuzzy Logic Controller based pitch control of aircraft tuned with Bees Algorithm","authors":"R. Zaeri, A. Ghanbarzadeh, B. Attaran, Z. Zaeri","doi":"10.1109/ICCIAUTOM.2011.6356745","DOIUrl":null,"url":null,"abstract":"For linear systems and some of non-severe nonlinear systems, classic controllers such as PI and PID have been widely used in industrial control processes because of their simple structure and robust performance in a wide range of operating conditions. Several numerical approaches such as Fuzzy Logic Controller (FLC) algorithm and evolutionary algorithms have been used for the optimum design of PID controllers. In this paper, a pitch displacement of aircraft was controlled by FLC tuned with Bees Algorithm (BA). For a given input, the parameters of Mamdani-type-Fuzzy Logic Controller (the centers and the widths of the triangle membership functions (MFs) in inputs and output) were optimized by the BA with Integral Time Absolute Error (ITAE) as a cost function. In order to compare the optimized Fuzzy Logic Controller with different controller, the PI controller was tuned with BA and also PI controller tuned with Ziegler-Nichols tuning rules. The simulation results show that Fuzzy Logic Controller tuned by bees algorithm is better performance and more robust than the fuzzy-Expert and PI tuned by bees algorithm and Ziegler-Nichols for aircraft pitch control.","PeriodicalId":438427,"journal":{"name":"The 2nd International Conference on Control, Instrumentation and Automation","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Control, Instrumentation and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6356745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

For linear systems and some of non-severe nonlinear systems, classic controllers such as PI and PID have been widely used in industrial control processes because of their simple structure and robust performance in a wide range of operating conditions. Several numerical approaches such as Fuzzy Logic Controller (FLC) algorithm and evolutionary algorithms have been used for the optimum design of PID controllers. In this paper, a pitch displacement of aircraft was controlled by FLC tuned with Bees Algorithm (BA). For a given input, the parameters of Mamdani-type-Fuzzy Logic Controller (the centers and the widths of the triangle membership functions (MFs) in inputs and output) were optimized by the BA with Integral Time Absolute Error (ITAE) as a cost function. In order to compare the optimized Fuzzy Logic Controller with different controller, the PI controller was tuned with BA and also PI controller tuned with Ziegler-Nichols tuning rules. The simulation results show that Fuzzy Logic Controller tuned by bees algorithm is better performance and more robust than the fuzzy-Expert and PI tuned by bees algorithm and Ziegler-Nichols for aircraft pitch control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊逻辑控制器的飞机俯仰控制
对于线性系统和一些非严重非线性系统,经典控制器如PI和PID因其结构简单,在广泛的工作条件下具有鲁棒性,在工业控制过程中得到了广泛的应用。模糊逻辑控制器(FLC)算法和进化算法等数值方法已被用于PID控制器的优化设计。本文采用蜜蜂算法(BA)调谐的FLC控制飞机的俯仰位移。对于给定的输入,以积分时间绝对误差(ITAE)为代价函数,用BA对mamdani型模糊控制器的参数(输入和输出中的三角隶属函数的中心和宽度)进行优化。为了将优化后的模糊控制器与不同的控制器进行比较,采用BA对PI控制器进行整定,并采用Ziegler-Nichols整定规则对PI控制器进行整定。仿真结果表明,蜜蜂算法调谐的模糊控制器比蜜蜂算法调谐的模糊专家控制器和PI控制器以及齐格勒-尼克尔斯控制器在飞机俯仰控制中具有更好的性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal design of adaptive interval type-2 fuzzy sliding mode control using Genetic algorithm Constrained model predictive control of PEM fuel cell with guaranteed stability Optimal control of an autonomous underwater vehicle using IPSO_SQP algorithm Design of an on-line recurrent wavelet network controller for a class of nonlinear systems Exact pupil and iris boundary detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1