{"title":"All about activity injection: Threats, semantics, and detection","authors":"Sungho Lee, Sungjae Hwang, Sukyoung Ryu","doi":"10.1109/ASE.2017.8115638","DOIUrl":null,"url":null,"abstract":"Android supports seamless user experience by maintaining activities from different apps in the same activity stack. While such close inter-app communication is essential in the Android framework, the powerful inter-app communication contains vulnerabilities that can inject malicious activities into a victim app's activity stack to hijack user interaction flows. In this paper, we demonstrate activity injection attacks with a simple malware, and formally specify the activity activation mechanism using operational semantics. Based on the operational semantics, we develop a static analysis tool, which analyzes Android apps to detect activity injection attacks. Our tool is fast enough to analyze real-world Android apps in 6 seconds on average, and our experiments found that 1,761 apps out of 129,756 real-world Android apps inject their activities into other apps' tasks.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"44 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Android supports seamless user experience by maintaining activities from different apps in the same activity stack. While such close inter-app communication is essential in the Android framework, the powerful inter-app communication contains vulnerabilities that can inject malicious activities into a victim app's activity stack to hijack user interaction flows. In this paper, we demonstrate activity injection attacks with a simple malware, and formally specify the activity activation mechanism using operational semantics. Based on the operational semantics, we develop a static analysis tool, which analyzes Android apps to detect activity injection attacks. Our tool is fast enough to analyze real-world Android apps in 6 seconds on average, and our experiments found that 1,761 apps out of 129,756 real-world Android apps inject their activities into other apps' tasks.