Industrial Internet Network Slice Prediction Algorithm Based on Multidimensional and Deep Neural Networks

Jihong Zhao, Gao-Jing Peng
{"title":"Industrial Internet Network Slice Prediction Algorithm Based on Multidimensional and Deep Neural Networks","authors":"Jihong Zhao, Gao-Jing Peng","doi":"10.1145/3573942.3573989","DOIUrl":null,"url":null,"abstract":"In the industrial Internet environment, the introduction of network slicing supports the connection of a large number of devices with different service requirements (QoS) sharing the same physical resources. Aiming at the problem of the adaptability of massive terminal devices and networks in industrial heterogeneous scenarios, this paper proposes a network slice prediction algorithm based on multi-dimensional and deep neural network (MDNN) based on the multi-dimensional resource network requirements of different terminal devices in specific industrial scenarios. The network slice prediction algorithm predicts the network resources required by the device at the next moment according to the historical network requirements and historical slice selection of the device, and selects the appropriate network slice for the device according to the prediction result. The simulation results show that the prediction accuracy of the proposed algorithm can reach 98.70%, which greatly improves the adaptability of the device and the network.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3573989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the industrial Internet environment, the introduction of network slicing supports the connection of a large number of devices with different service requirements (QoS) sharing the same physical resources. Aiming at the problem of the adaptability of massive terminal devices and networks in industrial heterogeneous scenarios, this paper proposes a network slice prediction algorithm based on multi-dimensional and deep neural network (MDNN) based on the multi-dimensional resource network requirements of different terminal devices in specific industrial scenarios. The network slice prediction algorithm predicts the network resources required by the device at the next moment according to the historical network requirements and historical slice selection of the device, and selects the appropriate network slice for the device according to the prediction result. The simulation results show that the prediction accuracy of the proposed algorithm can reach 98.70%, which greatly improves the adaptability of the device and the network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多维深度神经网络的工业互联网网络切片预测算法
在工业互联网环境下,网络切片的引入支持大量具有不同服务需求(QoS)的设备连接,共享相同的物理资源。针对工业异构场景下海量终端设备和网络的适应性问题,本文基于特定工业场景下不同终端设备的多维资源网络需求,提出了一种基于多维深度神经网络(mmdnn)的网络切片预测算法。网络切片预测算法根据设备的历史网络需求和历史切片选择,预测设备下一时刻所需的网络资源,并根据预测结果为设备选择合适的网络切片。仿真结果表明,该算法的预测准确率可达98.70%,大大提高了设备和网络的自适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Lightweight Method for Object Detection Incremental Encoding Transformer Incorporating Common-sense Awareness for Conversational Sentiment Recognition Non-intrusive Automatic 3D Gaze Ground-truth System Fiber Optic Gyroscope Random Error Modeling Based on Improved Kalman Filtering Channel Modeling of Spaceborne Multiwavelet Packet OFDM System Based on CWGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1