{"title":"Automatic validation of infinite real-time systems","authors":"Thomas Göthel, S. Glesner","doi":"10.1109/FormaliSE.2013.6612278","DOIUrl":null,"url":null,"abstract":"In safety-critical areas, complete and machine-assisted verification techniques for infinite real-time systems are required to ensure their correctness in all cases and to cope with their complexity. Previously, we presented a theorem prover-based comprehensive and compositional verification approach using the Timed CSP process calculus to model and verify possibly infinite real-time systems. However, it lacks support for employing automatic verification approaches to validate finite sub-processes of the overall system model. This mainly comes from insufficient automatic verification support for finite Timed CSP processes. In this paper, we present a real-time logic and a transformation of the Timed CSP process calculus to UPPAAL timed automata. We discuss their integration into our comprehensive verification approach as part of a prior validation phase. This is crucial because the effort for interactive verification in the theorem prover is thereby reduced considerably. By this, we provide a comprehensive machine-assisted verification approach without losing the benefits of automatic verification.","PeriodicalId":269932,"journal":{"name":"2013 1st FME Workshop on Formal Methods in Software Engineering (FormaliSE)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 1st FME Workshop on Formal Methods in Software Engineering (FormaliSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FormaliSE.2013.6612278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In safety-critical areas, complete and machine-assisted verification techniques for infinite real-time systems are required to ensure their correctness in all cases and to cope with their complexity. Previously, we presented a theorem prover-based comprehensive and compositional verification approach using the Timed CSP process calculus to model and verify possibly infinite real-time systems. However, it lacks support for employing automatic verification approaches to validate finite sub-processes of the overall system model. This mainly comes from insufficient automatic verification support for finite Timed CSP processes. In this paper, we present a real-time logic and a transformation of the Timed CSP process calculus to UPPAAL timed automata. We discuss their integration into our comprehensive verification approach as part of a prior validation phase. This is crucial because the effort for interactive verification in the theorem prover is thereby reduced considerably. By this, we provide a comprehensive machine-assisted verification approach without losing the benefits of automatic verification.