An Evaluation of Deep CNN Baselines for Scene-Independent Person Re-identification

P. Marchwica, Michael Jamieson, P. Siva
{"title":"An Evaluation of Deep CNN Baselines for Scene-Independent Person Re-identification","authors":"P. Marchwica, Michael Jamieson, P. Siva","doi":"10.1109/CRV.2018.00049","DOIUrl":null,"url":null,"abstract":"In recent years, a variety of proposed methods based on deep convolutional neural networks (CNNs) have improved the state of the art for large-scale person re-identification (ReID). While a large number of optimizations and network improvements have been proposed, there has been relatively little evaluation of the influence of training data and baseline network architecture. In particular, it is usually assumed either that networks are trained on labeled data from the deployment location (scene-dependent), or else adapted with unlabeled data, both of which complicate system deployment. In this paper, we investigate the feasibility of achieving scene-independent person ReID by forming a large composite dataset for training. We present an in-depth comparison of several CNN baseline architectures for both scene-dependent and scene-independent ReID, across a range of training dataset sizes. We show that scene-independent ReID can produce leading-edge results, competitive with unsupervised domain adaption techniques. Finally, we introduce a new dataset for comparing within-camera and across-camera person ReID.","PeriodicalId":281779,"journal":{"name":"2018 15th Conference on Computer and Robot Vision (CRV)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th Conference on Computer and Robot Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2018.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In recent years, a variety of proposed methods based on deep convolutional neural networks (CNNs) have improved the state of the art for large-scale person re-identification (ReID). While a large number of optimizations and network improvements have been proposed, there has been relatively little evaluation of the influence of training data and baseline network architecture. In particular, it is usually assumed either that networks are trained on labeled data from the deployment location (scene-dependent), or else adapted with unlabeled data, both of which complicate system deployment. In this paper, we investigate the feasibility of achieving scene-independent person ReID by forming a large composite dataset for training. We present an in-depth comparison of several CNN baseline architectures for both scene-dependent and scene-independent ReID, across a range of training dataset sizes. We show that scene-independent ReID can produce leading-edge results, competitive with unsupervised domain adaption techniques. Finally, we introduce a new dataset for comparing within-camera and across-camera person ReID.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
场景无关人物再识别的深度CNN基线评价
近年来,基于深度卷积神经网络(cnn)的各种方法已经提高了大规模人物再识别(ReID)的技术水平。虽然已经提出了大量的优化和网络改进,但对训练数据和基线网络架构的影响的评估相对较少。特别是,通常假设网络是在来自部署位置(依赖于场景)的标记数据上进行训练的,或者使用未标记的数据进行训练,这两种情况都会使系统部署复杂化。在本文中,我们通过形成一个大型的复合数据集进行训练,来研究实现场景无关的人物识别的可行性。我们在一系列训练数据集大小的范围内,对场景依赖和场景独立的ReID的几种CNN基线架构进行了深入比较。我们表明,场景无关的ReID可以产生领先的结果,与无监督域自适应技术竞争。最后,我们引入了一个新的数据集来比较相机内和跨相机的人物ReID。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic Street View Sampling: High Quality Annotation of Power Infrastructure in Rural Ontario Deep Learning-Driven Depth from Defocus via Active Multispectral Quasi-Random Projections with Complex Subpatterns De-noising of Lidar Point Clouds Corrupted by Snowfall Grading Prenatal Hydronephrosis from Ultrasound Imaging Using Deep Convolutional Neural Networks Automotive Semi-specular Surface Defect Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1