Event causality extraction based on Transformer sequence annotation model

Zefeng Xie, Shengwu Xiong
{"title":"Event causality extraction based on Transformer sequence annotation model","authors":"Zefeng Xie, Shengwu Xiong","doi":"10.1145/3529466.3529481","DOIUrl":null,"url":null,"abstract":"Text data such as research reports and announcements in the financial field contain a large amount of event causality that can be extracted and thus applied to downstream tasks such as prediction and Q&A. Traditional event causality extraction methods extract through sentence templates, which cannot cope with multiple pairs of causality in a sentence. This paper considers the event causality extraction task as a sequential annotation task. The event causality labels are divided into ”core noun in the cause”, ”predicate or state in the cause”, ”central word”, ”core noun in result”, and ”predicate or state in result”. We proposed using the Transformer sequence annotation model based on lexicon matching to identify and extract event causality. The F1 value of the Transformer model reaches 58.70 %, and the F1 of BERT+Transformer comes the highest, 69.49 %.","PeriodicalId":375562,"journal":{"name":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","volume":"48 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529466.3529481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text data such as research reports and announcements in the financial field contain a large amount of event causality that can be extracted and thus applied to downstream tasks such as prediction and Q&A. Traditional event causality extraction methods extract through sentence templates, which cannot cope with multiple pairs of causality in a sentence. This paper considers the event causality extraction task as a sequential annotation task. The event causality labels are divided into ”core noun in the cause”, ”predicate or state in the cause”, ”central word”, ”core noun in result”, and ”predicate or state in result”. We proposed using the Transformer sequence annotation model based on lexicon matching to identify and extract event causality. The F1 value of the Transformer model reaches 58.70 %, and the F1 of BERT+Transformer comes the highest, 69.49 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Transformer序列标注模型的事件因果关系提取
金融领域的研究报告和公告等文本数据包含大量的事件因果关系,可以提取这些事件因果关系,并将其应用于预测和问答等下游任务。传统的事件因果关系提取方法是通过句子模板进行提取的,无法处理一个句子中的多对因果关系。本文将事件因果关系提取任务视为一个顺序标注任务。事件因果标签分为“因中核心名词”、“因中谓词或状态”、“中心词”、“结果中核心名词”和“结果中谓词或状态”。提出了基于词汇匹配的Transformer序列标注模型来识别和提取事件因果关系。Transformer模型的F1值达到58.70%,BERT+Transformer模型的F1值最高,达到69.49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DGIC: A Distributed Graph Inference Computing Framework Suitable For Encoder-Decoder GNN Transformer-based Question Text Generation in the Learning System ECA-CBAM: Classification of Diabetic Retinopathy: Classification of diabetic retinopathy by cross-combined attention mechanism Speech Emotion Recognition Exploiting ASR-based and Phonological Knowledge Representations Heterogeneous Collaborative Refining for Real-Time End-to-End Image-Text Retrieval System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1