Processing performance on Apache Pig, Apache Hive and MySQL cluster

Ammar Fuad, Alva Erwin, Heru Purnomo Ipung
{"title":"Processing performance on Apache Pig, Apache Hive and MySQL cluster","authors":"Ammar Fuad, Alva Erwin, Heru Purnomo Ipung","doi":"10.1109/ICTS.2014.7010600","DOIUrl":null,"url":null,"abstract":"MySQL Cluster is a famous clustered database that is used to store and manipulate data. The problem with MySQL Cluster is that as the data grows larger, the time required to process the data increases and additional resources may be needed. With Hadoop and Hive and Pig, processing time can be faster than MySQL Cluster. In this paper, three data testers with the same data model will run simple queries and to find out at how many rows Hive or Pig is faster than MySQL Cluster. The data model taken from GroupLens Research Project [12] showed a result that Hive is the most appropriate for this data model in a low-cost hardware environment.","PeriodicalId":325095,"journal":{"name":"Proceedings of International Conference on Information, Communication Technology and System (ICTS) 2014","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Information, Communication Technology and System (ICTS) 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS.2014.7010600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

MySQL Cluster is a famous clustered database that is used to store and manipulate data. The problem with MySQL Cluster is that as the data grows larger, the time required to process the data increases and additional resources may be needed. With Hadoop and Hive and Pig, processing time can be faster than MySQL Cluster. In this paper, three data testers with the same data model will run simple queries and to find out at how many rows Hive or Pig is faster than MySQL Cluster. The data model taken from GroupLens Research Project [12] showed a result that Hive is the most appropriate for this data model in a low-cost hardware environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Apache Pig, Apache Hive和MySQL集群上的处理性能
MySQL集群是一个著名的集群数据库,用于存储和操作数据。MySQL集群的问题是,随着数据的增长,处理数据所需的时间增加,可能需要额外的资源。使用Hadoop、Hive和Pig,处理时间可以比MySQL集群快。在本文中,使用相同数据模型的三个数据测试人员将运行简单的查询,并找出Hive或Pig比MySQL集群快多少行。GroupLens Research Project[12]的数据模型表明,在低成本的硬件环境下,Hive是最适合该数据模型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preliminary study: Non cooperative power control game model for cognitive femtocell network Sugarcane leaf disease detection and severity estimation based on segmented spots image Algorithm for respiration estimation from 12-lead ECG machine An attendance management system for Moodle using student identification card and Android device A proposal of an organizational information security culture framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1