A Critical Review of "A Practical Guide to Select Quality Indicators for Assessing Pareto-Based Search Algorithms in Search-Based Software Engineering": Essay on Quality Indicator Selection for SBSE

Miqing Li, Tao Chen, Xin Yao
{"title":"A Critical Review of \"A Practical Guide to Select Quality Indicators for Assessing Pareto-Based Search Algorithms in Search-Based Software Engineering\": Essay on Quality Indicator Selection for SBSE","authors":"Miqing Li, Tao Chen, Xin Yao","doi":"10.1145/3183399.3183405","DOIUrl":null,"url":null,"abstract":"This paper presents a critical review of the work published at ICSE'2016 on a practical guide of quality indicator selection for assessing multiobjective solution sets in search-based software engineering (SBSE). This review has two goals. First, we aim at explaining why we disagree with the work at ICSE'2016 and why the reasons behind this disagreement are important to the SBSE community. Second, we aim at providing a more clarified guide of quality indicator selection, serving as a new direction on this particular topic for the SBSE community. In particular, we argue that it does matter which quality indicator to select, whatever in the same quality category or across different categories. This claim is based upon the fundamental goal of multiobjective optimisation — supplying the decision-maker a set of solutions which are the most consistent with their preferences.","PeriodicalId":212579,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)","volume":"145 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183399.3183405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a critical review of the work published at ICSE'2016 on a practical guide of quality indicator selection for assessing multiobjective solution sets in search-based software engineering (SBSE). This review has two goals. First, we aim at explaining why we disagree with the work at ICSE'2016 and why the reasons behind this disagreement are important to the SBSE community. Second, we aim at providing a more clarified guide of quality indicator selection, serving as a new direction on this particular topic for the SBSE community. In particular, we argue that it does matter which quality indicator to select, whatever in the same quality category or across different categories. This claim is based upon the fundamental goal of multiobjective optimisation — supplying the decision-maker a set of solutions which are the most consistent with their preferences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对“在基于搜索的软件工程中选择评估帕累托搜索算法的质量指标的实用指南”的批判性评论:关于SBSE质量指标选择的论文
本文对2016年ICSE上发表的关于基于搜索的软件工程(SBSE)中评估多目标解决方案集的质量指标选择实用指南的工作进行了批判性回顾。这篇综述有两个目标。首先,我们的目的是解释为什么我们不同意2016年ICSE的工作,以及为什么这种分歧背后的原因对SBSE社区很重要。其次,我们的目标是提供一个更明确的质量指标选择指南,为SBSE社区在这一特定主题上提供一个新的方向。特别是,我们认为选择哪个质量指标确实很重要,无论是在相同的质量类别中还是在不同的类别中。这种说法是基于多目标优化的基本目标——为决策者提供一组最符合他们偏好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Specific-Instance Interpolation Proofs with SyGuS Images of Code: Lossy Compression for Native Instructions Enabling Real-Time Feedback in Software Engineering Deep Customization of Multi-tenant SaaS Using Intrusive Microservices Measure Confidence of Assurance Cases in Safety-Critical Domains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1