Design considerations for a miniaturized TIM tester with extremely high measurement resolution

R. Warzoha, A. Smith, A. Bajwa, L. Boteler
{"title":"Design considerations for a miniaturized TIM tester with extremely high measurement resolution","authors":"R. Warzoha, A. Smith, A. Bajwa, L. Boteler","doi":"10.1109/ITHERM.2017.7992476","DOIUrl":null,"url":null,"abstract":"This work describes relevant design considerations for the fabrication of a miniaturized thermal interface material characterization instrument that is capable of resolving interfacial thermal resistances (Rt) below 1 mm2.K/W. Leveraging previous work (Warzoha et al., 2017, Smith et al. 2016), the authors propose a reduction in the length scale of the primary heat meter bars to below 4 mm in order to sufficiently increase the temperature difference across the interface, thereby reducing the measurement uncertainty of Rt across high-performance materials. The analytical uncertainty analysis takes advantage of an increase in the number of temperature measurements that can be made across the length of each bar via infrared microscopy. In a preliminary numerical analysis, we find that extreme care must be taken to apply and remove heat uniformly from the end points of each bar, particularly as the length of the bar is reduced below 4 mm. To do this, longitudinal fins are directly integrated into the bottom heat meter bar assembly and are immersed in a heat transfer fluid that is advected within a custom cold plate assembly. We conduct a parametric study to determine the linearity of the thermal gradient along the length of each heat meter bar, which in turn provides us with an upper limit for the number of temperature measurements that can be made via infrared microscopy and therefore the minimum achievable measurement of Rt. Finally, we use this information to design a more suitable lower heat meter bar cooling technique for measuring the thermal resistance across a sintered silver-copper interface with an expected value of Rt = 0.1 mm2.K/W. To do this, we find it necessary to transition from a heat sink cooling mechanism to the use of jet impingement for heat dissipation at the bottom of the lower heat meter bar.","PeriodicalId":387542,"journal":{"name":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2017.7992476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work describes relevant design considerations for the fabrication of a miniaturized thermal interface material characterization instrument that is capable of resolving interfacial thermal resistances (Rt) below 1 mm2.K/W. Leveraging previous work (Warzoha et al., 2017, Smith et al. 2016), the authors propose a reduction in the length scale of the primary heat meter bars to below 4 mm in order to sufficiently increase the temperature difference across the interface, thereby reducing the measurement uncertainty of Rt across high-performance materials. The analytical uncertainty analysis takes advantage of an increase in the number of temperature measurements that can be made across the length of each bar via infrared microscopy. In a preliminary numerical analysis, we find that extreme care must be taken to apply and remove heat uniformly from the end points of each bar, particularly as the length of the bar is reduced below 4 mm. To do this, longitudinal fins are directly integrated into the bottom heat meter bar assembly and are immersed in a heat transfer fluid that is advected within a custom cold plate assembly. We conduct a parametric study to determine the linearity of the thermal gradient along the length of each heat meter bar, which in turn provides us with an upper limit for the number of temperature measurements that can be made via infrared microscopy and therefore the minimum achievable measurement of Rt. Finally, we use this information to design a more suitable lower heat meter bar cooling technique for measuring the thermal resistance across a sintered silver-copper interface with an expected value of Rt = 0.1 mm2.K/W. To do this, we find it necessary to transition from a heat sink cooling mechanism to the use of jet impingement for heat dissipation at the bottom of the lower heat meter bar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有极高测量分辨率的小型化TIM测试仪的设计考虑
这项工作描述了制造小型化热界面材料表征仪器的相关设计考虑,该仪器能够解决低于1 mm2.K/W的界面热阻(Rt)。利用先前的工作(Warzoha等人,2017年,Smith等人,2016年),作者建议将主热测量棒的长度尺度减少到4毫米以下,以充分增加界面上的温差,从而降低高性能材料上Rt的测量不确定度。分析不确定度分析利用了通过红外显微镜可以在每个条的长度上进行的温度测量数量的增加。在初步的数值分析中,我们发现必须非常小心地从每个棒的末端均匀地施加和去除热量,特别是当棒的长度减少到4毫米以下时。为了做到这一点,纵向翅片直接集成到底部热计棒组件中,并浸入在定制冷板组件内平流的传热流体中。我们进行了参数化研究,以确定热梯度沿每个热计条长度的线性关系,这反过来又为我们提供了通过红外显微镜可以进行的温度测量次数的上限,从而为rt提供了最小可实现的测量值。我们利用这些信息设计了一种更合适的低热计条冷却技术,用于测量烧结银铜界面上的热阻,其期望值为Rt = 0.1 mm2.K/W。为了做到这一点,我们发现有必要从散热器冷却机制过渡到使用射流撞击在较低的热计杆底部散热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Degradation characterization of thermal interface greases Gravity effects in microgap flow boiling Effect of electrode properties on performance of miniaturized vanadium redox flow battery Two-phase liquid cooling system for electronics, part 1: Pump-driven loop Development of algorithms for real-time estimation of smartphone surface temperature using embedded processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1