Scalable computation of prediction intervals for neural networks via matrix sketching

A. Fishkov, Maxim Panov
{"title":"Scalable computation of prediction intervals for neural networks via matrix sketching","authors":"A. Fishkov, Maxim Panov","doi":"10.48550/arXiv.2205.03194","DOIUrl":null,"url":null,"abstract":". Accounting for the uncertainty in the predictions of modern neural networks is a challenging and important task in many do-mains. Existing algorithms for uncertainty estimation require modify-ing the model architecture and training procedure (e.g., Bayesian neural networks) or dramatically increase the computational cost of predictions such as approaches based on ensembling. This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals. The method is based on the classical delta method in statistics but achieves computational efficiency by using matrix sketching to approximate the Jacobian matrix. The resulting algorithm is competitive with state-of-the-art approaches for constructing predictive intervals on various regression datasets from the UCI repository.","PeriodicalId":350447,"journal":{"name":"International Joint Conference on the Analysis of Images, Social Networks and Texts","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on the Analysis of Images, Social Networks and Texts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.03194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. Accounting for the uncertainty in the predictions of modern neural networks is a challenging and important task in many do-mains. Existing algorithms for uncertainty estimation require modify-ing the model architecture and training procedure (e.g., Bayesian neural networks) or dramatically increase the computational cost of predictions such as approaches based on ensembling. This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals. The method is based on the classical delta method in statistics but achieves computational efficiency by using matrix sketching to approximate the Jacobian matrix. The resulting algorithm is competitive with state-of-the-art approaches for constructing predictive intervals on various regression datasets from the UCI repository.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于矩阵草图的神经网络预测区间的可扩展计算
. 对现代神经网络预测中的不确定性进行解释是一项具有挑战性的重要任务。现有的不确定性估计算法需要修改模型架构和训练过程(例如,贝叶斯神经网络),或者大幅增加预测的计算成本,例如基于集成的方法。这项工作提出了一种新的算法,可以应用于给定的训练神经网络,并产生近似的预测区间。该方法基于统计学中的经典delta方法,但采用矩阵素描法逼近雅可比矩阵,从而提高了计算效率。所得到的算法与在UCI存储库的各种回归数据集上构建预测区间的最先进方法具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable computation of prediction intervals for neural networks via matrix sketching Extracting Software Requirements from Unstructured Documents Near-Zero-Shot Suggestion Mining with a Little Help from WordNet Selection of pseudo-annotated data for adverse drug reaction classification across drug groups Citation network applications in a scientific co-authorship recommender system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1