Sentiment Analysis with Soft-Voting Method on Customer Reviews for Purchasing Transactions of E-Commerce

Zulfadli, A. A. Ilham, Indrabayu
{"title":"Sentiment Analysis with Soft-Voting Method on Customer Reviews for Purchasing Transactions of E-Commerce","authors":"Zulfadli, A. A. Ilham, Indrabayu","doi":"10.1109/IAICT59002.2023.10205954","DOIUrl":null,"url":null,"abstract":"The accuracy of customer reviews is crucial for an e-commerce platform to assist buyers in selecting high-quality products from a vast array of options. This research aims to develop a sentiment analysis model for evaluating customer opinions expressed in e-commerce product reviews. The proposed approach utilizes the Soft Voting (SV) technique, which demonstrates superior accuracy compared to the conventional Sentiment Selector (SS) method. The sentiment analysis model’s accuracy is determined by gathering probability values from three classifiers (Support Vector Machine (SVM), Random Forest (RF), and Naive Bayes (NB)) for each sentiment category (positive, neutral, negative). The evaluation is conducted using the Tokopedia product review dataset. The findings indicate that the Soft Voting (SV) model outperforms the Sentiment Selector (SS) approach. The proposed SV model achieves an accuracy, precision, recall, and f1-score of 69%, 70%, 69%, and 69%, respectively.","PeriodicalId":339796,"journal":{"name":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT59002.2023.10205954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accuracy of customer reviews is crucial for an e-commerce platform to assist buyers in selecting high-quality products from a vast array of options. This research aims to develop a sentiment analysis model for evaluating customer opinions expressed in e-commerce product reviews. The proposed approach utilizes the Soft Voting (SV) technique, which demonstrates superior accuracy compared to the conventional Sentiment Selector (SS) method. The sentiment analysis model’s accuracy is determined by gathering probability values from three classifiers (Support Vector Machine (SVM), Random Forest (RF), and Naive Bayes (NB)) for each sentiment category (positive, neutral, negative). The evaluation is conducted using the Tokopedia product review dataset. The findings indicate that the Soft Voting (SV) model outperforms the Sentiment Selector (SS) approach. The proposed SV model achieves an accuracy, precision, recall, and f1-score of 69%, 70%, 69%, and 69%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于软投票法的电子商务采购交易客户评论情感分析
客户评论的准确性对于电子商务平台帮助买家从大量选择中选择高质量的产品至关重要。本研究旨在建立一个情感分析模型,以评估电子商务产品评论中所表达的顾客意见。该方法利用软投票(SV)技术,与传统的情感选择器(SS)方法相比,具有更高的准确性。情感分析模型的准确性是通过收集三个分类器(支持向量机(SVM)、随机森林(RF)和朴素贝叶斯(NB))对每个情感类别(积极、中性、消极)的概率值来确定的。评估使用Tokopedia产品评论数据集进行。研究结果表明,软投票(SV)模型优于情感选择(SS)方法。提出的SV模型的准确率、精密度、召回率和f1得分分别为69%、70%、69%和69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UE Clustering Based on Grid Affinity Propagation for mmWave D2D in Virtual Small Cells Temporal-Spatial Time Series Self-Attention 2D & 3D Human Motion Forecasting An End-to-end Anchorless Approach to Recognize Hand Gestures using CenterNet Automated Human Facial Emotion Recognition System Using Depthwise Separable Convolutional Neural Network Snacks Detection Under Overlapped Conditions Using Computer Vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1