RoverNet: Vision-Based Adaptive Human-to-Robot Object Handovers

Matija Mavsar, A. Ude
{"title":"RoverNet: Vision-Based Adaptive Human-to-Robot Object Handovers","authors":"Matija Mavsar, A. Ude","doi":"10.1109/Humanoids53995.2022.10000200","DOIUrl":null,"url":null,"abstract":"Enabling dynamic human-to-robot handovers is a challenging task, requiring a combination of human pose estimation, motion prediction and generation of a suitable receiving robot trajectory. In this paper, we present a method, capable of predicting human motion during a handover process by utilizing a state-of-the-art pose estimation framework, a single RGB-D camera and a recurrent neural network. Additionally, we propose a method for humanoid robot control that adapts the corresponding receiving trajectory in real time. We evaluate the network for handover position prediction and show that it can accurately predict the goal location of the human hand during a handover. We also implement an adaptive humanoid robot control system that can facilitate a dynamic handover procedure.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Enabling dynamic human-to-robot handovers is a challenging task, requiring a combination of human pose estimation, motion prediction and generation of a suitable receiving robot trajectory. In this paper, we present a method, capable of predicting human motion during a handover process by utilizing a state-of-the-art pose estimation framework, a single RGB-D camera and a recurrent neural network. Additionally, we propose a method for humanoid robot control that adapts the corresponding receiving trajectory in real time. We evaluate the network for handover position prediction and show that it can accurately predict the goal location of the human hand during a handover. We also implement an adaptive humanoid robot control system that can facilitate a dynamic handover procedure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RoverNet:基于视觉的自适应人机对象切换
实现动态人机切换是一项具有挑战性的任务,需要结合人体姿势估计,运动预测和生成合适的接收机器人轨迹。在本文中,我们提出了一种方法,能够通过利用最先进的姿态估计框架,单个RGB-D相机和递归神经网络来预测切换过程中的人体运动。此外,我们还提出了一种实时适应相应接收轨迹的仿人机器人控制方法。我们对该网络的切换位置预测进行了评估,结果表明该网络可以准确地预测切换过程中人手的目标位置。我们还实现了一个自适应的仿人机器人控制系统,该系统可以促进动态切换过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Patient- and Teleoperator-led Robotic Physiotherapy via Strain Map Segmentation and Shared-authority Self-Contained Calibration of an Elastic Humanoid Upper Body Using Only a Head-Mounted RGB Camera Self-collision avoidance in bimanual teleoperation using CollisionIK: algorithm revision and usability experiment Bimanual Manipulation Workspace Analysis of Humanoid Robots with Object Specific Coupling Constraints A Dexterous, Adaptive, Affordable, Humanlike Robot Hand: Towards Prostheses with Dexterous Manipulation Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1