Hybrid fuzzy-fuzzy controller for PWM-driven induction motor drive

M. Magzoub, N. Saad, R. Ibrahim, M. Maharun, S. Zulkifli
{"title":"Hybrid fuzzy-fuzzy controller for PWM-driven induction motor drive","authors":"M. Magzoub, N. Saad, R. Ibrahim, M. Maharun, S. Zulkifli","doi":"10.1109/PECON.2014.7062453","DOIUrl":null,"url":null,"abstract":"This paper represents a method for the designing and developing of a hybrid fuzzy-fuzzy control (HFFC) scheme to gain control over the speed of an induction motor (IM). The fuzzy frequency control and fuzzy current amplitude control are studied in a closed-loop current amplitude input model for an induction motor. A combination of both controllers forms the hybrid controller. The principle of HFFC is to control the rotor speed during acceleration-deceleration stage using fuzzy frequency controller and during steady-state stage using fuzzy stator current magnitude controller to overcome the drawback of field oriented control (FOC) method. The two features (frequency and current) of FOC are employed to design a scalar controller. The software, MATLAB/Simulink is used for the simulation to determine the performance of the controller. A series of tests has been conducted to study the performance of the controller and the results shown that the controller is more reliable and insensitivity to the parameters of the motor changes as compared to the classical indirect field-oriented control (IFOC).","PeriodicalId":126366,"journal":{"name":"2014 IEEE International Conference on Power and Energy (PECon)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECON.2014.7062453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper represents a method for the designing and developing of a hybrid fuzzy-fuzzy control (HFFC) scheme to gain control over the speed of an induction motor (IM). The fuzzy frequency control and fuzzy current amplitude control are studied in a closed-loop current amplitude input model for an induction motor. A combination of both controllers forms the hybrid controller. The principle of HFFC is to control the rotor speed during acceleration-deceleration stage using fuzzy frequency controller and during steady-state stage using fuzzy stator current magnitude controller to overcome the drawback of field oriented control (FOC) method. The two features (frequency and current) of FOC are employed to design a scalar controller. The software, MATLAB/Simulink is used for the simulation to determine the performance of the controller. A series of tests has been conducted to study the performance of the controller and the results shown that the controller is more reliable and insensitivity to the parameters of the motor changes as compared to the classical indirect field-oriented control (IFOC).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pwm驱动感应电机的模糊-模糊混合控制
本文提出了一种用于异步电动机转速控制的模糊-模糊混合控制方案的设计与开发方法。在异步电动机电流幅值闭环输入模型中,研究了模糊频率控制和模糊电流幅值控制。这两种控制器的组合形成混合控制器。HFFC的原理是在加减速阶段使用模糊频率控制器控制转子转速,在稳态阶段使用模糊定子电流大小控制器控制转子转速,以克服磁场定向控制方法的缺点。利用FOC的两个特性(频率和电流)设计标量控制器。利用MATLAB/Simulink软件进行仿真,确定控制器的性能。通过一系列试验研究了该控制器的性能,结果表明,与传统的间接磁场定向控制(IFOC)相比,该控制器具有更高的可靠性和对电机参数变化的不敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of polymer nanocomposites: Permittivity vs. electric field intensity Techno-economical assessment of grid-connected photovoltaic power systems productivity in summer season in Klagenfurt, Austria Effect of fault resistance on the behavior of superconducting fault current limiter in power systems A case study on ground resistance based on copper electrode vs. galvanized iron electrode Flashover monitoring system using wireless sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1