ENTRADA: A high-performance network traffic data streaming warehouse

M. Wullink, G. Moura, M. Müller, Cristian Hesselman
{"title":"ENTRADA: A high-performance network traffic data streaming warehouse","authors":"M. Wullink, G. Moura, M. Müller, Cristian Hesselman","doi":"10.1109/NOMS.2016.7502925","DOIUrl":null,"url":null,"abstract":"We present ENTRADA, a high-performance data streaming warehouse that enables researchers and operators to analyze vast amounts of network traffic and measurement data within interactive response times (seconds to few minutes), even in a small computer cluster. ENTRADA delivers such performance by employing a optimized file format and a high-performance query engine, both open-source. ENTRADA has been operational for more than 1.5 years, having ingested more than 100 TB of pcap files from two .nl DNS authoritative servers. As we discuss, we use this data in projects that aim at further increasing the security and stability of the .nl zone. We present in this paper our design choices, experiences, and a performance evaluation of ENTRADA. Finally, we open-source ENTRADA, which can be used “out-of-the-box” by researchers, operators, and registries to deploy their own networking analysis clusters for DNS traffic, and can be easily extended to handle any other structured data.","PeriodicalId":344879,"journal":{"name":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2016.7502925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

We present ENTRADA, a high-performance data streaming warehouse that enables researchers and operators to analyze vast amounts of network traffic and measurement data within interactive response times (seconds to few minutes), even in a small computer cluster. ENTRADA delivers such performance by employing a optimized file format and a high-performance query engine, both open-source. ENTRADA has been operational for more than 1.5 years, having ingested more than 100 TB of pcap files from two .nl DNS authoritative servers. As we discuss, we use this data in projects that aim at further increasing the security and stability of the .nl zone. We present in this paper our design choices, experiences, and a performance evaluation of ENTRADA. Finally, we open-source ENTRADA, which can be used “out-of-the-box” by researchers, operators, and registries to deploy their own networking analysis clusters for DNS traffic, and can be easily extended to handle any other structured data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ENTRADA:高性能网络流量数据流仓库
我们介绍了ENTRADA,一种高性能数据流仓库,使研究人员和操作人员能够在交互响应时间(几秒到几分钟)内分析大量网络流量和测量数据,即使在小型计算机集群中也是如此。ENTRADA通过采用优化的文件格式和高性能查询引擎提供这样的性能,两者都是开源的。ENTRADA已经运行了1.5年多,从两个。nl DNS权威服务器中摄取了超过100tb的pcap文件。正如我们讨论的那样,我们将这些数据用于旨在进一步提高.nl区的安全性和稳定性的项目中。在本文中,我们介绍了我们的设计选择,经验和性能评估的ENTRADA。最后,我们开源了ENTRADA,它可以被研究人员、运营商和注册管理机构用于部署他们自己的DNS流量网络分析集群,并且可以很容易地扩展到处理任何其他结构化数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PIoT: Programmable IoT using Information Centric Networking Workload interleaving with performance guarantees in data centers Outsourced invoice service: Service-clearing as SaaS in mobility service marketplaces Dynamic load management for IMS networks using network function virtualization On-demand dynamic network service deployment over NaaS architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1