Machine Learning based Load and Temperature Behavior Clustering and Peak Shifting Implementation on Bangladeshi Grid Data

Shaira Senjuti Oyshee, Shaharehar Rahaman Anik, Mohammad Jawad Ul Kabir Chowdhury, Md. Ahsan Kabir
{"title":"Machine Learning based Load and Temperature Behavior Clustering and Peak Shifting Implementation on Bangladeshi Grid Data","authors":"Shaira Senjuti Oyshee, Shaharehar Rahaman Anik, Mohammad Jawad Ul Kabir Chowdhury, Md. Ahsan Kabir","doi":"10.1109/ECCE57851.2023.10100746","DOIUrl":null,"url":null,"abstract":"With a continual rise in electricity prices, the integration of demand-side management (DSM) techniques such as peak load shifting and load behavior patterns with machine learning-based solutions has become a necessity in modern grid management. In this paper, using the Pearson correlation coefficient (PCC), the correlation between a synthesized dataset consisting of load consumption data from the national grid of Bangladesh, and meteorological data, such as maximum and minimum temperature has been calculated, which resulted in values of 0.84, 0.87 and 0.89, respectively. Next, the yearly load data have been clustered using a k-Means clustering algorithm, to find consumption patterns, and using the labels, temperature ranges are clustered to suggest temperature dependence, in accordance with consumption patterns. Finally, for every cluster, using a hypothetical set of percentages, a peak shaving, and load shifting algorithm has been implemented to show hypothetical approximates of load shifting potential for every year, which produced percentages 8.83, 9.07, and 8.79 for the years 2018, 2019 and 2021, respectively.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10100746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With a continual rise in electricity prices, the integration of demand-side management (DSM) techniques such as peak load shifting and load behavior patterns with machine learning-based solutions has become a necessity in modern grid management. In this paper, using the Pearson correlation coefficient (PCC), the correlation between a synthesized dataset consisting of load consumption data from the national grid of Bangladesh, and meteorological data, such as maximum and minimum temperature has been calculated, which resulted in values of 0.84, 0.87 and 0.89, respectively. Next, the yearly load data have been clustered using a k-Means clustering algorithm, to find consumption patterns, and using the labels, temperature ranges are clustered to suggest temperature dependence, in accordance with consumption patterns. Finally, for every cluster, using a hypothetical set of percentages, a peak shaving, and load shifting algorithm has been implemented to show hypothetical approximates of load shifting potential for every year, which produced percentages 8.83, 9.07, and 8.79 for the years 2018, 2019 and 2021, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的孟加拉电网负荷和温度行为聚类及移峰实现
随着电价的不断上涨,需求侧管理(DSM)技术(如峰值负荷转移和负荷行为模式)与基于机器学习的解决方案的集成已成为现代电网管理的必要条件。本文利用Pearson相关系数(PCC)计算了由孟加拉国国家电网负荷消耗数据组成的综合数据集与最高、最低气温等气象数据之间的相关性,其结果分别为0.84、0.87和0.89。接下来,使用k-Means聚类算法对年负荷数据进行聚类,以找到消费模式,并使用标签,对温度范围进行聚类,以根据消费模式显示温度依赖性。最后,对于每个集群,使用假设的百分比集,实现了调峰和负载转移算法,以显示每年负载转移潜力的假设近似,分别为2018年,2019年和2021年的百分比为8.83,9.07和8.79。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclone Prediction Visualization Tools Using Machine Learning Models and Optical Flow Exploratory Perspective of PV Net-Energy-Metering for Residential Prosumers: A Case Study in Dhaka, Bangladesh Estimation of Soil Moisture with Meteorological Variables in Supervised Machine Learning Models Deep CNN-GRU Based Human Activity Recognition with Automatic Feature Extraction Using Smartphone and Wearable Sensors Bengali-English Neural Machine Translation Using Deep Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1