Evaluation of Feature Extraction Methods for Face Recognition

Yin Liu, Chuanzhen Li, Bailiang Su, Hui Wang
{"title":"Evaluation of Feature Extraction Methods for Face Recognition","authors":"Yin Liu, Chuanzhen Li, Bailiang Su, Hui Wang","doi":"10.1109/ISCID.2013.192","DOIUrl":null,"url":null,"abstract":"Feature operators can transform raw pixel values of an image into a representation better suited to the later processing and classification steps in the face recognition system. In this paper, we evaluate the performance of 6 feature extraction methods, i.e., Local Binary Patterns, Histograms of Oriented Gradients, Scale Invariant Feature Transform, Speed-Up Robust Features, Fully Affine SIFT and Gabor features. Each feature was tested on 3 face databases of Yale, ORL and UMIST. The experimental recognition rate and matching time are given and compared to indicate different preferential features for different application conditions. ASIFT has the best result in recognition rate while SURF outperforms others in matching time.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Feature operators can transform raw pixel values of an image into a representation better suited to the later processing and classification steps in the face recognition system. In this paper, we evaluate the performance of 6 feature extraction methods, i.e., Local Binary Patterns, Histograms of Oriented Gradients, Scale Invariant Feature Transform, Speed-Up Robust Features, Fully Affine SIFT and Gabor features. Each feature was tested on 3 face databases of Yale, ORL and UMIST. The experimental recognition rate and matching time are given and compared to indicate different preferential features for different application conditions. ASIFT has the best result in recognition rate while SURF outperforms others in matching time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸识别中特征提取方法的评价
特征算子可以将图像的原始像素值转换为更适合人脸识别系统后期处理和分类步骤的表示。在本文中,我们评估了6种特征提取方法的性能,即局部二值模式,定向梯度直方图,尺度不变特征变换,加速鲁棒特征,全仿射SIFT和Gabor特征。每个特征在耶鲁大学、ORL和UMIST的3个人脸数据库上进行了测试。给出了实验识别率和匹配时间,对比了不同应用条件下的不同优先特征。ASIFT在识别率上效果最好,SURF在匹配时间上优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Swarm Optimization-Least Squares Support Vector Regression with Multi-scale Wavelet Kernel Application of BP Neural Networks to Testing the Reasonableness of Flood Season Staging Balancing an Inverted Pendulum with an EEG-Based BCI Multi-feature Visual Tracking Using Adaptive Unscented Kalman Filtering Design of a Novel Portable ECG Monitor for Heart Health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1