{"title":"16-Elements Helical Antenna System Integration with a Solar Cell Powered IoT Collector","authors":"N. Ullah, A. Tekin","doi":"10.1109/CAMA47423.2019.8959623","DOIUrl":null,"url":null,"abstract":"An 868MHz-915MHz 16-elements helical wire antenna array design with a solar-cell integration is presented. Each element is designed to be omni-directional with the corresponding tuning stubs and ground substrate. This is shared with distributed solar cell array, powering 16- Internet of Things (IoT) transceivers operating at multiple Industrial Scientific and Medical (ISM) bands. 370mm×400mm design including the antennas, solar cells, and the tuning stubs can generate 8-watts solar power under direct sun, charging Lithium batteries. 1.6-mm thick planner design with horizontal radiation pattern resulted in average −15dB return loss at 868-MHz without using any external matching elements.","PeriodicalId":170627,"journal":{"name":"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)","volume":"108 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMA47423.2019.8959623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
An 868MHz-915MHz 16-elements helical wire antenna array design with a solar-cell integration is presented. Each element is designed to be omni-directional with the corresponding tuning stubs and ground substrate. This is shared with distributed solar cell array, powering 16- Internet of Things (IoT) transceivers operating at multiple Industrial Scientific and Medical (ISM) bands. 370mm×400mm design including the antennas, solar cells, and the tuning stubs can generate 8-watts solar power under direct sun, charging Lithium batteries. 1.6-mm thick planner design with horizontal radiation pattern resulted in average −15dB return loss at 868-MHz without using any external matching elements.