{"title":"Reinforcement learning for adaptive operator selection in memetic search applied to quadratic assignment problem","authors":"S. D. Handoko, D. Nguyen, Z. Yuan, H. Lau","doi":"10.1145/2598394.2598451","DOIUrl":null,"url":null,"abstract":"Memetic search is well known as one of the state-of-the-art metaheuristics for finding high-quality solutions to NP-hard problems. Its performance is often attributable to appropriate design, including the choice of its operators. In this paper, we propose a Markov Decision Process model for the selection of crossover operators in the course of the evolutionary search. We solve the proposed model by a Q-learning method. We experimentally verify the efficacy of our proposed approach on the benchmark instances of Quadratic Assignment Problem.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Memetic search is well known as one of the state-of-the-art metaheuristics for finding high-quality solutions to NP-hard problems. Its performance is often attributable to appropriate design, including the choice of its operators. In this paper, we propose a Markov Decision Process model for the selection of crossover operators in the course of the evolutionary search. We solve the proposed model by a Q-learning method. We experimentally verify the efficacy of our proposed approach on the benchmark instances of Quadratic Assignment Problem.