Extracting meronyms for a biology knowledge base using distant supervision

Xiao Ling, Peter Clark, Daniel S. Weld
{"title":"Extracting meronyms for a biology knowledge base using distant supervision","authors":"Xiao Ling, Peter Clark, Daniel S. Weld","doi":"10.1145/2509558.2509560","DOIUrl":null,"url":null,"abstract":"Knowledge of objects and their parts, meronym relations, are at the heart of many question-answering systems, but manually encoding these facts is impractical. Past researchers have tried hand-written patterns, supervised learning, and bootstrapped methods, but achieving both high precision and recall has proven elusive. This paper reports on a thorough exploration of distant supervision to learn a meronym extractor for the domain of college biology. We introduce a novel algorithm, generalizing the ``at least one'' assumption of multi-instance learning to handle the case where a fixed (but unknown) percentage of bag members are positive examples. Detailed experiments compare strategies for mention detection, negative example generation, leveraging out-of-domain meronyms, and evaluate the benefit of our multi-instance percentage model.","PeriodicalId":371465,"journal":{"name":"Conference on Automated Knowledge Base Construction","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Automated Knowledge Base Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2509558.2509560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Knowledge of objects and their parts, meronym relations, are at the heart of many question-answering systems, but manually encoding these facts is impractical. Past researchers have tried hand-written patterns, supervised learning, and bootstrapped methods, but achieving both high precision and recall has proven elusive. This paper reports on a thorough exploration of distant supervision to learn a meronym extractor for the domain of college biology. We introduce a novel algorithm, generalizing the ``at least one'' assumption of multi-instance learning to handle the case where a fixed (but unknown) percentage of bag members are positive examples. Detailed experiments compare strategies for mention detection, negative example generation, leveraging out-of-domain meronyms, and evaluate the benefit of our multi-instance percentage model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用远程监控提取生物知识库的别名
对象及其组成部分的知识、同义词关系是许多问答系统的核心,但手动编码这些事实是不切实际的。过去的研究人员尝试过手写模式、监督学习和自举方法,但事实证明,既要实现高精度又要实现召回是难以捉摸的。本文报道了对大学生物学领域远程监督学习的深入探索。我们引入了一种新的算法,推广了多实例学习的“至少一个”假设,以处理固定(但未知)百分比的包成员是正例的情况。详细的实验比较了提及检测、负例生成、利用域外异名的策略,并评估了我们的多实例百分比模型的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Rule Learning in Probabilistic Knowledge Bases Extracting semantic knowledge from Wikipedia category names Mining history with Le Monde A study of the knowledge base requirements for passing an elementary science test A survey of noise reduction methods for distant supervision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1