{"title":"Computational and Communication Reduction Technique in Machine Learning Based Near Sensor Applications","authors":"M. A. Neggaz, S. Niar, F. Kurdahi","doi":"10.1109/ICM.2018.8704033","DOIUrl":null,"url":null,"abstract":"State-of-the-art Convolutional Neural Networks (CNN) are used to process images. In most cases, videos are streamed and processed frame by frame using a CNN. In this paper we present a two-step approach to process images in a real-life streaming environment. We exploit size-reduction and data encoding to reduce the computational and communication load. A near-sensor architecture is proposed. The final design reaches 14 EPS for the full Faster R-CNN pipeline.","PeriodicalId":305356,"journal":{"name":"2018 30th International Conference on Microelectronics (ICM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2018.8704033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
State-of-the-art Convolutional Neural Networks (CNN) are used to process images. In most cases, videos are streamed and processed frame by frame using a CNN. In this paper we present a two-step approach to process images in a real-life streaming environment. We exploit size-reduction and data encoding to reduce the computational and communication load. A near-sensor architecture is proposed. The final design reaches 14 EPS for the full Faster R-CNN pipeline.