Review of Association Mining Methods for the Extraction of Rules Based on the Frequency and Utility Factors

Subba Reddy Meruva, B. Venkateswarlu
{"title":"Review of Association Mining Methods for the Extraction of Rules Based on the Frequency and Utility Factors","authors":"Subba Reddy Meruva, B. Venkateswarlu","doi":"10.4018/IJITPM.2021100101","DOIUrl":null,"url":null,"abstract":"Association rule defines the relationship among the items and discovers the frequent items using a support-confidence framework. This framework establishes user-interested or strong association rules with two thresholds (i.e., minimum support and minimum confidence). Traditional association rule mining methods (i.e., apriori and frequent pattern growth [FP-growth]) are widely used for discovering of frequent itemsets, and limitation of these methods is that they are not considering the key factors of the items such as profit, quantity, or cost of items during the mining process. Applications like e-commerce, marketing, healthcare, and web recommendations, etc. consist of items with their utility or profit. Such cases, utility-based itemsets mining methods, are playing a vital role in the generation of effective association rules and are also useful in the mining of high utility itemsets. This paper presents the survey on high-utility itemsets mining methods and discusses the observation study of existing methods with their experimental study using benchmarked datasets.","PeriodicalId":375999,"journal":{"name":"Int. J. Inf. Technol. Proj. Manag.","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Proj. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITPM.2021100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Association rule defines the relationship among the items and discovers the frequent items using a support-confidence framework. This framework establishes user-interested or strong association rules with two thresholds (i.e., minimum support and minimum confidence). Traditional association rule mining methods (i.e., apriori and frequent pattern growth [FP-growth]) are widely used for discovering of frequent itemsets, and limitation of these methods is that they are not considering the key factors of the items such as profit, quantity, or cost of items during the mining process. Applications like e-commerce, marketing, healthcare, and web recommendations, etc. consist of items with their utility or profit. Such cases, utility-based itemsets mining methods, are playing a vital role in the generation of effective association rules and are also useful in the mining of high utility itemsets. This paper presents the survey on high-utility itemsets mining methods and discusses the observation study of existing methods with their experimental study using benchmarked datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频率和效用因子的规则提取关联挖掘方法综述
关联规则定义项目之间的关系,并使用支持-置信度框架发现频繁项目。该框架用两个阈值(即最小支持度和最小置信度)建立用户感兴趣的或强关联规则。传统的关联规则挖掘方法(即先验和频繁模式增长[FP-growth])被广泛用于频繁项集的发现,这些方法的局限性在于它们在挖掘过程中没有考虑项的利润、数量或成本等关键因素。电子商务、市场营销、医疗保健和网络推荐等应用程序由具有效用或利润的项目组成。在这种情况下,基于效用的项集挖掘方法在有效关联规则的生成中起着至关重要的作用,并且在高效用项集的挖掘中也很有用。本文介绍了高效用项目集挖掘方法的概况,并讨论了现有方法的观察研究及其使用基准数据集的实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adapting P2M Framework for Innovation Program Management Through a Lean-Agile Approach Mining Project Failure Indicators From Big Data Using Machine Learning Mixed Methods A Proposal for Research on the Application of AI/ML in ITPM: Intelligent Project Management "Soar" or "Sore": Examining and Reflecting on Bank Performance During Global Financial Crisis - An Indian Scenario FDI Inflow in BRICS and G7: An Empirical Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1