Scalable deep neural network accelerator cores with cubic integration using through chip interface

Ryuichi Sakamoto, Ryo Takata, Jun Ishii, Masaaki Kondo, Hiroshi Nakamura, T. Ohkubo, Takuya Kojima, H. Amano
{"title":"Scalable deep neural network accelerator cores with cubic integration using through chip interface","authors":"Ryuichi Sakamoto, Ryo Takata, Jun Ishii, Masaaki Kondo, Hiroshi Nakamura, T. Ohkubo, Takuya Kojima, H. Amano","doi":"10.1109/ISOCC.2017.8368843","DOIUrl":null,"url":null,"abstract":"Due to the recent advances in Deep Neural Network (DNN) technologies, recognition and inference applications are expected to run on mobile embedded systems. Developing high-performance and power-efficient DNN engines becomes one of the important challenges for embedded systems. Since DNN algorithms or structures are frequently updated, flexibility and performance scalability to deal with various types of networks are crucial requirement of the DNN accelerator design. In this paper, we describe the architecture and LSI design of a flexible and scalable CNN accelerator called SNACC (Scalable Neuro Accelerator Core with Cubic integration) which consists of several processing cores, on-chip memory modules, and ThruChip Interface (TCI).","PeriodicalId":248826,"journal":{"name":"2017 International SoC Design Conference (ISOCC)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2017.8368843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the recent advances in Deep Neural Network (DNN) technologies, recognition and inference applications are expected to run on mobile embedded systems. Developing high-performance and power-efficient DNN engines becomes one of the important challenges for embedded systems. Since DNN algorithms or structures are frequently updated, flexibility and performance scalability to deal with various types of networks are crucial requirement of the DNN accelerator design. In this paper, we describe the architecture and LSI design of a flexible and scalable CNN accelerator called SNACC (Scalable Neuro Accelerator Core with Cubic integration) which consists of several processing cores, on-chip memory modules, and ThruChip Interface (TCI).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展的深度神经网络加速器核心与立方集成使用通过芯片接口
由于深度神经网络(DNN)技术的最新进展,识别和推理应用有望在移动嵌入式系统上运行。开发高性能、低功耗的深度神经网络引擎已成为嵌入式系统面临的重要挑战之一。由于深度神经网络算法或结构经常更新,因此处理各种类型网络的灵活性和性能可扩展性是深度神经网络加速器设计的关键要求。在本文中,我们描述了一个灵活和可扩展的CNN加速器的架构和LSI设计,称为SNACC(可扩展神经加速器核心与立方集成),它由几个处理内核,片上存储模块和ThruChip接口(TCI)组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory efficient self guided image filtering A fully-digital phase modulator with phase calibration loop for high data-rate systems Development of SoC virtual platform for IoT terminals based on OneM2M Hardware feasible offset and gain error correction for time-interleaved ADC A design of ultra-low noise LDO using noise reduction network techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1