A comparison of effectiveness of risk data clustering method in Psychiatric Patient Service

Khaengkai Compapong, Sumonta Kasemvilas
{"title":"A comparison of effectiveness of risk data clustering method in Psychiatric Patient Service","authors":"Khaengkai Compapong, Sumonta Kasemvilas","doi":"10.1109/ICITEED.2013.6676201","DOIUrl":null,"url":null,"abstract":"In this paper, we clustered clinical risk data of a mental health service, Khon Kaen Rajanagarindra Psychiatric Hospital. This study aims to compare performance values of cluster (k) in k-means clustering algorithm and hierarchical clustering algorithm. The result shows that for k-means clustering algorithm, sum of squared error (SSE) is 32.68, minimum of distance (MD) is 1.38, mean squared error (MSE) is 2.95 and values of k is 11. Therefore, we found that k-means clustering algorithm is the most appropriate method for using in cluster the risk group of the Psychiatric Patient Service. The result also suggests that the most risky age is between the ages of 32 and 36. The result can be a guideline for further research about data prediction. The implications of this study can assist medical staff to be knowledgeable about what should beware of when they treat psychiatric patients and this can be basic planning medicate guidelines for medical staff.","PeriodicalId":204082,"journal":{"name":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2013.6676201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we clustered clinical risk data of a mental health service, Khon Kaen Rajanagarindra Psychiatric Hospital. This study aims to compare performance values of cluster (k) in k-means clustering algorithm and hierarchical clustering algorithm. The result shows that for k-means clustering algorithm, sum of squared error (SSE) is 32.68, minimum of distance (MD) is 1.38, mean squared error (MSE) is 2.95 and values of k is 11. Therefore, we found that k-means clustering algorithm is the most appropriate method for using in cluster the risk group of the Psychiatric Patient Service. The result also suggests that the most risky age is between the ages of 32 and 36. The result can be a guideline for further research about data prediction. The implications of this study can assist medical staff to be knowledgeable about what should beware of when they treat psychiatric patients and this can be basic planning medicate guidelines for medical staff.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风险数据聚类方法在精神病患者服务中的有效性比较
在本文中,我们聚集了一家精神卫生服务机构——Khon Kaen Rajanagarindra精神病院的临床风险数据。本研究旨在比较k-means聚类算法和分层聚类算法中聚类(k)的性能值。结果表明,k-means聚类算法的平方误差和(SSE)为32.68,最小距离(MD)为1.38,均方误差(MSE)为2.95,k值为11。因此,我们发现k-means聚类算法是最适合用于精神病患者服务风险群体聚类的方法。研究结果还表明,最危险的年龄是32岁至36岁。研究结果可为进一步的数据预测研究提供指导。本研究的意义可以帮助医务人员了解在治疗精神病患者时应该注意什么,这可以作为医务人员的基本计划用药指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal unit commitment solution using genetic algorithm combined with the principle of tabu search and priority list method Using estimated arithmetic means of accuracies to select features for face-based gender classification Analysis of factors influencing the mobile technology acceptance for library information services: Conceptual model News recommendation in Indonesian language based on user click behavior A kinetic energy-based feature for unsupervised motion clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1