Indoor positioning using particle filters with optimal importance function

Leila Pishdad, F. Labeau
{"title":"Indoor positioning using particle filters with optimal importance function","authors":"Leila Pishdad, F. Labeau","doi":"10.1109/WPNC.2012.6268742","DOIUrl":null,"url":null,"abstract":"Particle filters have been widely used in positioning problems, to post-process the noisy location sensor measurements. In this paper, instead of the commonly used Prior Importance Function for particle filtering, we have formulated and applied the Optimal Importance Function. Unlike other importance functions, the Optimal Importance Function minimizes the variance of particle weights and thus resolves the degeneracy problem of particle filters. In this work, we have derived a closed form formula for the Optimal Importance Function using map-independent random walk velocity motion model and a GMM sensor error. Due to the generality of the proposed method, it can be used for a wide range of moving objects in different environments. Simulation results support the validity of modeling assumptions and the advantage of applying an Optimal Importance Function in indoor localization and positioning.","PeriodicalId":399340,"journal":{"name":"2012 9th Workshop on Positioning, Navigation and Communication","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th Workshop on Positioning, Navigation and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2012.6268742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Particle filters have been widely used in positioning problems, to post-process the noisy location sensor measurements. In this paper, instead of the commonly used Prior Importance Function for particle filtering, we have formulated and applied the Optimal Importance Function. Unlike other importance functions, the Optimal Importance Function minimizes the variance of particle weights and thus resolves the degeneracy problem of particle filters. In this work, we have derived a closed form formula for the Optimal Importance Function using map-independent random walk velocity motion model and a GMM sensor error. Due to the generality of the proposed method, it can be used for a wide range of moving objects in different environments. Simulation results support the validity of modeling assumptions and the advantage of applying an Optimal Importance Function in indoor localization and positioning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用具有最优重要函数的粒子过滤器进行室内定位
粒子滤波被广泛应用于定位问题中,用于对有噪声的定位传感器测量结果进行后处理。本文用最优重要函数来代替常用的先验重要函数来进行粒子滤波。与其他重要函数不同的是,最优重要函数最小化了粒子权重的方差,从而解决了粒子滤波器的退化问题。在这项工作中,我们使用与地图无关的随机行走速度运动模型和GMM传感器误差推导了最优重要性函数的封闭形式公式。由于所提出的方法的通用性,它可以用于不同环境中的各种运动物体。仿真结果验证了模型假设的有效性和最优重要函数在室内定位中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of fusion algorithm for hybrid pedestrian localization and navigation Improved localization using Kalman filter on estimated positions Characterizing and improving the collaborative position location problem Cooperative localization with 802.15.4a CSS radios: Robustness to node failures Passive localization using array sensor with support vector machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1