Low entropy data mapping for sparse iterative linear solvers

M. Esmaily-Moghadam, Y. Bazilevs, A. Marsden
{"title":"Low entropy data mapping for sparse iterative linear solvers","authors":"M. Esmaily-Moghadam, Y. Bazilevs, A. Marsden","doi":"10.1145/2484762.2484797","DOIUrl":null,"url":null,"abstract":"An efficient parallel data structure implementation is presented to modify the permutation on the residual vector to achieve optimized memory layout of partitioned meshes for solving sparse linear systems. This novel algorithm is proposed to sort the data on each processor with respect to a set of rules. This simplifies implementation of parallel iterative solver algorithms and allows an overlap between non-blocking MPI communication and computations in matrix-vector product operations.","PeriodicalId":426819,"journal":{"name":"Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484762.2484797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An efficient parallel data structure implementation is presented to modify the permutation on the residual vector to achieve optimized memory layout of partitioned meshes for solving sparse linear systems. This novel algorithm is proposed to sort the data on each processor with respect to a set of rules. This simplifies implementation of parallel iterative solver algorithms and allows an overlap between non-blocking MPI communication and computations in matrix-vector product operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏迭代线性求解的低熵数据映射
提出了一种有效的并行数据结构实现,通过修改残差向量上的排列,实现了求解稀疏线性系统分区网格的优化内存布局。该算法根据一组规则对每个处理器上的数据进行排序。这简化了并行迭代求解算法的实现,并允许非阻塞MPI通信和矩阵向量乘积运算中的计算之间的重叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing utilization across XSEDE platforms Adaptive latency-aware parallel resource mapping: task graph scheduling onto heterogeneous network topology Optimizing the PCIT algorithm on stampede's Xeon and Xeon Phi processors for faster discovery of biological networks Training, education, and outreach: raising the bar Preliminary experiences with the uintah framework on Intel Xeon Phi and stampede
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1